日韩黑丝制服一区视频播放|日韩欧美人妻丝袜视频在线观看|九九影院一级蜜桃|亚洲中文在线导航|青草草视频在线观看|婷婷五月色伊人网站|日本一区二区在线|国产AV一二三四区毛片|正在播放久草视频|亚洲色图精品一区

分享

統(tǒng)計學(xué)漫談(3)——概率該如何理解?

 taotao_2016 2020-04-11

說明:

  • 概率論通常是已知概率分布,去研究分布的的各種性質(zhì)(比如分布的期望(即通常所說的均值)怎么算、方差怎么算,均值符從什么分布等)
  • 數(shù)理統(tǒng)計則恰好相反,它要解決的問題知道從某個總體分布中抽取出的數(shù)據(jù),要去推斷分布及其相關(guān)參數(shù)
  • 無論但無論概率論和數(shù)理統(tǒng)計其實都非常關(guān)注概率的定義及在現(xiàn)實中含義

統(tǒng)計學(xué)漫談(3)——概率該如何理解?

概率在各種場景下都有廣泛應(yīng)用

1.先看四個問題

  • 扔一枚均勻硬幣出現(xiàn)正面的概率是50%,這個概率是怎么計算出來的?
  • 天氣預(yù)報說明天下雨的概率是50%,這個是怎么算出來的?
  • 某人說他感覺明顯下雨的可能性是70%,這個是怎么估計出來的?
  • 在國內(nèi)新冠病毒的死亡率是4%左右,因此推斷出新冠患者的平均死亡概率是4%,這個怎么理解?

暫時不對這個四個問題給答案,看完后續(xù)的內(nèi)容大家應(yīng)該能找到答案。

2.概率的實際含義

  • 頻率估計概率:扔均勻硬幣、擲骰子這種實驗是可以重復(fù)的,而且可以比較方便的將每次實驗控制的條件基本相同,這樣我們很方便的計算出投了10000次硬幣,出現(xiàn)正面的次數(shù)大概在4999次,由此計算出扔均勻硬幣的頻率約為50%,我們認(rèn)為這就是扔均勻硬幣的概率,這里面實際上是隱含著一種參數(shù)估計的思想。以下是歷史上若干有名的概率統(tǒng)計牛人扔硬幣的實驗結(jié)果

統(tǒng)計學(xué)漫談(3)——概率該如何理解?

歷史上若干有名的概率統(tǒng)計牛人扔硬幣的實驗的結(jié)果

  • 古典概型:以上實驗有一個有一個特征:實驗可以在同等條件下重復(fù)、實驗基本結(jié)果是有限的、任意基礎(chǔ)實驗結(jié)果的出現(xiàn)等可能的,這種概率模型也稱之為古典概型
  • 幾何概型:實際還有一種在同等條件下重復(fù)、基本實驗結(jié)果無限、任意基礎(chǔ)實驗結(jié)果的出現(xiàn)等可能的。比如,一根長3米的繩子拉直后在任意位置剪斷(只減一次),減下的兩段不小于1米的概率有多大。大家很容易算出概率是1/3。如下圖所示

統(tǒng)計學(xué)漫談(3)——概率該如何理解?

幾何概型最初的運用上并沒有碰到什么問題。1899年,法國學(xué)者貝特朗針對“幾何概型”了一個悖論:“在一個圓內(nèi)任意選一條弦,這條弦的弦長長于這個圓的內(nèi)接等邊三角形的邊長的概率是多少?”。這里針對等可能性會有三種不同的解釋,因此會得出三種不同的概率,分別未1/3。這個悖論的提出為后續(xù)柯爾莫哥洛夫建立概率論公理化體系起了一定的推動作用

以上對概率的理解更多是對頻率學(xué)派對概率的理解

  • 主觀概率或者叫個人概率:指的是一個事件的個人概率是0到1之間的數(shù)字,代表的是個人對于該事件發(fā)生幾率的判斷。這種概率的有點很明顯:就是不限于“重復(fù)發(fā)生的事情”。但缺點也很明顯,就是不客觀。但主觀概率在貝葉斯學(xué)派和日常生活中應(yīng)用廣泛。

3.概率的數(shù)學(xué)定義

此處給出的概率論公理化體系是俄國數(shù)學(xué)家柯爾莫哥洛夫在1933年提出的理論。在柯氏之前其實有若干大牛數(shù)學(xué)家做過類似的工作,但只有柯氏的定義流傳了下來。主要是柯氏的定義簡潔明了,非常適用。在柯氏概率論公理化體系的基礎(chǔ)上可以推導(dǎo)出整個概率論的體系。

統(tǒng)計學(xué)漫談(3)——概率該如何理解?

4.在現(xiàn)實中概率意味著什么?

根據(jù)柯氏的定義我們要應(yīng)用概率必須先確定當(dāng)前問題的抽象事件空間。天氣預(yù)報員宣布明天下雨的概率是50%時,他使用的抽象事件集合是什么呢?如果是每一個明天出門的人組成的集合。那么50%的人可能會淋雨(不考慮帶傘)。如果是每一時刻的集合,那么人們在50%的時間里面會淋雨。如果是某個地區(qū)每一平方米土地的集合。那50%的土地會淋雨。當(dāng)然,它不可能是這些集合,那么,這個集合到底是什么呢? 盡管對這個問題有若干研究,但并沒有形成定論。

    本站是提供個人知識管理的網(wǎng)絡(luò)存儲空間,所有內(nèi)容均由用戶發(fā)布,不代表本站觀點。請注意甄別內(nèi)容中的聯(lián)系方式、誘導(dǎo)購買等信息,謹(jǐn)防詐騙。如發(fā)現(xiàn)有害或侵權(quán)內(nèi)容,請點擊一鍵舉報。
    轉(zhuǎn)藏 分享 獻花(0

    0條評論

    發(fā)表

    請遵守用戶 評論公約

    類似文章 更多