日韩黑丝制服一区视频播放|日韩欧美人妻丝袜视频在线观看|九九影院一级蜜桃|亚洲中文在线导航|青草草视频在线观看|婷婷五月色伊人网站|日本一区二区在线|国产AV一二三四区毛片|正在播放久草视频|亚洲色图精品一区

分享

專家論壇|兒童肝移植免疫耐受相關(guān)進(jìn)展

 臨床肝膽病雜志 2019-12-13


1  兒童肝移植免疫耐受的特點(diǎn)

免疫耐受是指器官移植受者在停止免疫抑制藥物治療的情況下,移植物保持正常的功能,且不影響受者的免疫功能,保持對(duì)感染、腫瘤等正常的免疫應(yīng)答反應(yīng)[4]。20世紀(jì)90年代初,美國的Starzl教授團(tuán)隊(duì)[5]最早發(fā)現(xiàn)了肝移植免疫耐受現(xiàn)象。在11例因依從性差或免疫抑制劑不良反應(yīng)而停用免疫抑制劑治療的肝移植患者中,發(fā)現(xiàn)在6個(gè)月至13年的隨訪過程中,這些受者移植肝功能保持著正常。在此基礎(chǔ)上,該團(tuán)隊(duì)開始有目的的通過逐步停用免疫抑制劑,對(duì)包括95例肝移植患者誘導(dǎo)術(shù)后免疫耐受進(jìn)行觀察,研究結(jié)果令人振奮,18例患者可完全停止服用免疫抑制劑,隨訪時(shí)間達(dá)34個(gè)月[6]。隨后,該現(xiàn)象在一組包括20例兒童親屬活體肝移植受者的研究中也得到驗(yàn)證[7]。

這種現(xiàn)象與肝臟作為一個(gè)免疫調(diào)節(jié)器官的獨(dú)特解剖結(jié)構(gòu)相關(guān),因此也稱其為免疫特惠器官。肝臟是雙血供器官,強(qiáng)大的血流可以稀釋免疫復(fù)合物并減少免疫復(fù)合物的形成和沉積[8];肝臟內(nèi)大量的肝竇上皮細(xì)胞、Kupffer細(xì)胞、樹突狀細(xì)胞與自然殺傷細(xì)胞(NK細(xì)胞)也與肝臟內(nèi)部的免疫調(diào)節(jié)作用密切相關(guān)[8-11];肝臟強(qiáng)大的再生功能可以克服輕度的排斥反應(yīng)[12]。

與成人肝移植患者相比,免疫耐受現(xiàn)象在兒童肝移植患者中的比例更高[7]。此前報(bào)道,成人肝移植患者出現(xiàn)免疫耐受的比例為20%左右,而兒童肝移植患者術(shù)后出現(xiàn)操控性耐受的比例可達(dá)60%[13]。在Takatsuki等[14]的研究中,63例因藥物導(dǎo)致的嚴(yán)重并發(fā)癥而停止服用免疫抑制劑的活體肝移植兒童受者中,24例出現(xiàn)免疫耐受,這些兒童平均停藥時(shí)間接近2年,接受肝移植時(shí)的平均年齡為1.1歲,提示年齡較低在誘導(dǎo)免疫耐受上可能更有優(yōu)勢。在兒童時(shí)期,胸腺是一個(gè)高度強(qiáng)大的免疫器官,是T淋巴細(xì)胞發(fā)育、成熟的場所,對(duì)于誘導(dǎo)供體特異性耐受非常關(guān)鍵。胸腺調(diào)節(jié)性T淋巴細(xì)胞(Treg細(xì)胞)由兩部分組成,一部分是由CD4單陽性胸腺細(xì)胞新生成的Treg細(xì)胞,另一部分是進(jìn)入胸腺再循環(huán)的外周Treg細(xì)胞。在人類和小鼠中,初始型Treg細(xì)胞幾乎全部依賴于胸腺產(chǎn)生。兒童胸腺中的Treg細(xì)胞非常豐富,1 g胸腺組織所含Treg細(xì)胞大約是1 ml外周血的500倍,而且在擴(kuò)增后功能穩(wěn)定[15]。新生兒胸腺的微解剖屏障對(duì)外來細(xì)胞的限制沒有成人胸腺那么嚴(yán)格,更容易產(chǎn)生供體抗原特異性Treg細(xì)胞;通過消耗進(jìn)入胸腺的效應(yīng)T淋巴細(xì)胞,提高誘導(dǎo)中樞免疫耐受的效果。

2  誘導(dǎo)免疫耐受的主要方法

免疫耐受的誘導(dǎo)與維持不是某一種調(diào)節(jié)機(jī)制的作用,而是多種機(jī)制協(xié)同作用的結(jié)果,包括凋亡、調(diào)節(jié)性細(xì)胞的獲取、抑制增殖等。現(xiàn)階段誘導(dǎo)免疫耐受的方法主要有克隆無能、克隆清除與免疫調(diào)節(jié)等。

克隆無能是指T淋巴細(xì)胞僅與抗原遞呈細(xì)胞上的抗原肽-主要組織相容性復(fù)合物結(jié)合,激活第一信號(hào),而沒有完成由抗原遞呈細(xì)胞和T淋巴細(xì)胞表面黏附分子結(jié)合提供的第二信號(hào),即共刺激信號(hào),使T淋巴細(xì)胞不能繼續(xù)分化,不具有完整的免疫功能,且可進(jìn)一步被誘導(dǎo)凋亡。目前研究較多的是B7/CD28共刺激通路、CD40/CD40L共刺激通路、CD80/CD86共刺激通路以及OX40/OX40L共刺激通路。其中,OX40/OX40L共刺激途徑可以促進(jìn)CD4+T淋巴細(xì)胞增殖、存活、遷移,可促進(jìn)Treg細(xì)胞擴(kuò)增,但擴(kuò)增的Treg細(xì)胞對(duì)效應(yīng)性T淋巴細(xì)胞的抑制作用較弱,且細(xì)胞內(nèi)程序性死亡受體1上調(diào)[16]。外源性IL-2可阻止這一過程,增強(qiáng)Treg細(xì)胞活性[17-18]。

克隆清除是指胸腺通過陰性選擇去除(中央型清除)其內(nèi)未成熟的特異性T淋巴細(xì)胞克隆,或直接清除外周循環(huán)中已成熟的特異性T淋巴細(xì)胞克?。ㄖ車颓宄瑥亩T導(dǎo)并維持免疫耐受。胸腺作為T淋巴細(xì)胞發(fā)育、成熟的中樞免疫器官,發(fā)揮著重要作用。除此以外,造血干細(xì)胞移植也可誘導(dǎo)免疫耐受,而動(dòng)物實(shí)驗(yàn)與臨床試驗(yàn)已證實(shí)輸注全骨髓細(xì)胞、外周血細(xì)胞、CD34細(xì)胞、脾細(xì)胞均可誘導(dǎo)免疫耐受[19]。造血干細(xì)胞移植誘導(dǎo)免疫耐受的機(jī)制主要是誘導(dǎo)受者產(chǎn)生嵌合體,以抑制移植術(shù)后的排斥反應(yīng)[20-22]。使用單克隆或多克隆抗體清除外周效應(yīng)性T淋巴細(xì)胞,減弱受者的反應(yīng),可獲得外周性免疫耐受。目前研究較多的單抗有抗IL-2受體單抗、抗CD4單抗、抗CD25單抗等,而多克隆抗體在臨床應(yīng)用較多的為抗胸腺細(xì)胞球蛋白。

免疫調(diào)節(jié)是指利用具有免疫抑制功能的細(xì)胞亞群或細(xì)胞因子,發(fā)揮其負(fù)性調(diào)節(jié)作用,抑制排斥反應(yīng)、誘導(dǎo)免疫耐受。其研究的熱點(diǎn)包括Treg細(xì)胞、調(diào)節(jié)性B淋巴細(xì)胞、間充質(zhì)干細(xì)胞、未成熟的樹突狀細(xì)胞、γδT淋巴細(xì)胞以及TGFβ、IL-10等[23-24]。其中,尤以Treg細(xì)胞最為引人關(guān)注。

Treg細(xì)胞主要在胸腺與外周淋巴器官中發(fā)育,F(xiàn)oxp3是CD4+Treg細(xì)胞分化、發(fā)育、保持功能穩(wěn)定的重要因子,也是其最重要的標(biāo)志物。筆者發(fā)現(xiàn)兒童肝移植患者在發(fā)生急性排斥反應(yīng)時(shí),外周血中CD4+CD25+Foxp3+Treg細(xì)胞比例降低,在抗排斥治療后進(jìn)一步下降,1周后仍不能恢復(fù)正常[25]。而在停用免疫抑制劑5年以上的肝移植患者中,肝穿刺組織中的Treg細(xì)胞比例則明顯增加[26]。Hajkova等[27]發(fā)現(xiàn)在細(xì)胞培養(yǎng)中加用雷帕霉素可以顯著地提升體外培養(yǎng)體系中Foxp3的表達(dá)。而增加TGFβ、IL-2等細(xì)胞因子可以促進(jìn)Treg細(xì)胞的分化、修復(fù)調(diào)節(jié)功能[28],使用骨髓間充質(zhì)干細(xì)胞還可以誘導(dǎo)幼稚T淋巴細(xì)胞向Treg細(xì)胞分化[29]。動(dòng)物移植模型已經(jīng)證實(shí)供體抗原特異性Treg細(xì)胞在防止排斥反應(yīng)方面優(yōu)于體外培養(yǎng)的多克隆Treg細(xì)胞[30]。利用輸注體外培養(yǎng)的供體抗原特異性Treg細(xì)胞,7例活體肝移植患者產(chǎn)生了免疫耐受[31]。但體外培養(yǎng)的Treg細(xì)胞壽命較短,在一項(xiàng)臍帶血Treg細(xì)胞預(yù)防移植物抗宿主病的研究中,輸注的Treg細(xì)胞的半衰期大約在20 d左右,且與輸注的Treg細(xì)胞劑量無關(guān)[32],而且受他克莫司的抑制作用比較明顯[33]。而利用基因工程技術(shù),通過T淋巴細(xì)胞受體(T cell receptor, TCR)產(chǎn)生的供體抗原特異性Treg細(xì)胞(TCR-Treg)可以較好的維持抗原特異性[34]。在此基礎(chǔ)上,將供體主要組織相容性復(fù)合物與Treg細(xì)胞結(jié)合,得到嵌合抗原受體Treg細(xì)胞,彌補(bǔ)了TCR-Treg細(xì)胞的缺陷[35]。但嵌合抗原受體Treg細(xì)胞的不足是輸注后可能引起細(xì)胞因子“風(fēng)暴”和神經(jīng)系統(tǒng)毒性,另外標(biāo)靶抗原的選擇、特異性抗體的產(chǎn)生難度較大,容易出現(xiàn)細(xì)胞衰竭[36]。

3  臨床操控性免疫耐受

多項(xiàng)研究[4,37]發(fā)現(xiàn),在經(jīng)過篩選的患者中,成功撤除免疫抑制劑且維持移植物功能正常的比例為15%~60%,隨訪達(dá)12~140個(gè)月。對(duì)于臨床操控性免疫耐受,并無具體的描述與定義。誘導(dǎo)操控性免疫耐受的肝移植受者的初步要求包括移植術(shù)后持續(xù)較長一段時(shí)間內(nèi)保持移植肝功能良好、撤藥前患者未出現(xiàn)經(jīng)證實(shí)的排斥反應(yīng)、受者術(shù)前原發(fā)病非免疫相關(guān)性疾病。Banff工作組對(duì)操控性免疫耐受給出的一個(gè)較為保守的解釋是:在撤藥或完全停藥的1、3、5、10年中沒有不良的臨床表現(xiàn)、沒有肝損傷的生化學(xué)或組織病理學(xué)證據(jù)[38]。

 對(duì)于臨床操控性免疫耐受執(zhí)行過程中的評(píng)判標(biāo)準(zhǔn)及監(jiān)測指標(biāo)則差異較大。對(duì)于具體的時(shí)間要求,有的研究[4]認(rèn)為停藥4個(gè)月以上,未發(fā)生排斥反應(yīng),肝活組織檢查提示未發(fā)生排斥反應(yīng)即達(dá)到免疫耐受,也有研究[39]認(rèn)為必須達(dá)到停藥12個(gè)月以上。無論是藥物減量過程中,還是撤藥后,組織學(xué)評(píng)估都非常關(guān)鍵[40]。Feng等[41]的團(tuán)隊(duì)則認(rèn)為撤藥方案中的關(guān)鍵就是隨訪中的組織學(xué)檢查,潛在耐受患者需在停用免疫抑制劑的0、1、3、5、8年接受5次肝活組織檢查,避免持續(xù)性或進(jìn)展性的炎癥反應(yīng)或纖維化??勺鳛橥K幍念A(yù)測因素包括低齡、移植與開始停藥的時(shí)間間隔較長、單用他克莫司、淋巴細(xì)胞反應(yīng)性低、肝活組織檢查門靜脈區(qū)炎癥反應(yīng)少、移植術(shù)后人類白細(xì)胞抗原相關(guān)抗體低表達(dá)[4,6,13,42]。有研究[43]認(rèn)為早期無排斥反應(yīng)、人類白細(xì)胞抗原-A匹配、后期Treg細(xì)胞比例升高是操控性耐受的相關(guān)因素。表1簡要總結(jié)了近年來兒童肝移植臨床操控性免疫耐受的開展情況。

相比于上述臨床因素,免疫學(xué)指標(biāo)更為引人關(guān)注,主要集中于具有免疫抑制作用的細(xì)胞亞群。Kim等[47]認(rèn)為Treg細(xì)胞可以作為免疫耐受的一個(gè)評(píng)估指標(biāo)。在肝移植患者減少免疫抑制劑過程中,Treg/Th17比例也可以預(yù)測是否能出現(xiàn)肝移植術(shù)后免疫耐受[48]。Lau等[49]研究發(fā)現(xiàn),出現(xiàn)操控性耐受的兒童肝移植患者中CD4+CD5+CD25+CD38-/loCD45RA細(xì)胞比例明顯高于服用低劑量免疫抑制劑的穩(wěn)定患者。Kong等[50]發(fā)現(xiàn)肝移植免疫耐受患者體內(nèi)γδT淋巴細(xì)胞的一個(gè)亞型高于健康人群,同時(shí)它也是移植免疫耐受患者體內(nèi)主要的亞型。兒童肝移植受者中,外周血與移植物中γδT淋巴細(xì)胞顯著增高[51]。然而Puig-Pey等[52]發(fā)現(xiàn)病毒感染的免疫抑制患者中也可出現(xiàn)γδT淋巴細(xì)胞增多的現(xiàn)象,因此不能將γδT淋巴細(xì)胞的增多作為評(píng)判移植免疫耐受的依據(jù)。Goldschmidt等[53]通過CD4+T淋巴細(xì)胞、CD8+T淋巴細(xì)胞、CD19+B淋巴細(xì)胞、CD56/16+NK細(xì)胞、CD56+T淋巴細(xì)胞、單個(gè)核細(xì)胞、粒細(xì)胞以及50種不同的細(xì)胞因子、趨化因子、血管生成因子,還包括移植肝中的miRNA表達(dá)等綜合評(píng)估患者免疫狀態(tài)。隨著技術(shù)的進(jìn)步,研究者在基因水平開始尋找耐受相關(guān)性。Li等[54]對(duì)NK細(xì)胞轉(zhuǎn)錄信號(hào)進(jìn)行基因檢測后發(fā)現(xiàn),其在耐受患者中的敏感度達(dá)100%,特異度達(dá)83%。鐘克波等[55]利用基因芯片和RT-PCR技術(shù),對(duì)血液樣本進(jìn)行了轉(zhuǎn)錄圖譜分析,檢出13種在免疫細(xì)胞中高表達(dá)的特異性免疫耐受基因。

4  目前存在的問題

總體而言,實(shí)現(xiàn)臨床免疫耐受、完全撤除免疫抑制劑方案的基本內(nèi)容應(yīng)包括篩選合適受者、逐步撤藥、密切監(jiān)測。其需要解決的問題主要是如何制訂入組的篩選標(biāo)準(zhǔn)?依靠哪些檢測指標(biāo)評(píng)判撤藥過程及最終免疫耐受狀態(tài)?病例數(shù)量與特性是否充分、具有代表性?利用科技的進(jìn)步,從臨床現(xiàn)象能否探索出誘導(dǎo)免疫耐受的機(jī)制?目前,對(duì)于上述問題尚缺乏可靠答案。

現(xiàn)階段,誘導(dǎo)肝移植免疫耐受相關(guān)研究在嚙齒類等小動(dòng)物實(shí)驗(yàn)中的成果較為滿意,但在靈長類大動(dòng)物與臨床應(yīng)用中仍面臨較大困難。尤其是臨床工作中,缺乏實(shí)現(xiàn)操控性免疫耐受的具體方案與標(biāo)準(zhǔn)。此外,尚存在倫理學(xué)爭議,主要體現(xiàn)在撤藥后患者所面臨的風(fēng)險(xiǎn)。

在常規(guī)監(jiān)測中,肝功能檢查最為常見,但在肝功能正常的情況下,亞臨床炎癥或進(jìn)展性纖維化亦常出現(xiàn),缺乏移植物的組織學(xué)證據(jù),不足以證實(shí)已安全停用免疫抑制劑及操控性耐受的成功[56]。撤藥過程中及停藥后移植肝情況評(píng)估的金標(biāo)準(zhǔn)為肝活組織檢查,但是由于其為有創(chuàng)操作,存在出血等風(fēng)險(xiǎn),并不適合于日常監(jiān)測,且活組織檢查對(duì)移植受者整體免疫狀況的評(píng)估價(jià)值有限[57]。

在成功停用免疫抑制劑后仍存在移植物丟失或纖維化的潛在風(fēng)險(xiǎn)[58]。在長期生存的規(guī)律使用免疫抑制劑而出現(xiàn)移植物炎癥或纖維化的兒童肝移植受者中,免疫抑制不足常被認(rèn)為是可能的病因[59-61]。在Yoshitomi等[44]的研究中,15%(87/581例)的兒童活體肝移植受者成功撤除免疫抑制劑、出現(xiàn)了免疫耐受,但在隨訪近10年后,與接受正常免疫抑制劑治療的兒童相比,免疫耐受兒童受者的肝纖維化發(fā)生率較高,在重新給予免疫抑制劑治療后,肝纖維化有所減輕。但在Feng等[41]報(bào)道的一項(xiàng)多中心研究中,在完全撤除免疫抑制劑隨訪5年后,兒童肝移植受者的肝纖維化程度降低,研究者認(rèn)為肝臟自身獨(dú)特的免疫調(diào)節(jié)機(jī)制會(huì)逆轉(zhuǎn)肝纖維化。

另一方面,對(duì)于撤藥可消除免疫抑制劑的毒副作用而言,Pons等[62]發(fā)現(xiàn)撤除免疫抑制劑后,可改善肝移植術(shù)后患者的腎功能,同時(shí)還可降低高血壓、高脂血癥及高尿酸血癥等代謝性疾病的發(fā)生率。但Perito等[63]的研究則與之相左,他們的成果證實(shí)撤除鈣調(diào)神經(jīng)蛋白抑制劑類免疫抑制劑并不會(huì)影響代謝綜合征的發(fā)生。而Zheng等[64]在恒河猴的動(dòng)物免疫耐受實(shí)驗(yàn)中發(fā)現(xiàn),皮膚移植物在嵌合體產(chǎn)生后可穩(wěn)定生存24個(gè)月,但存在巨細(xì)胞病毒感染的風(fēng)險(xiǎn)。

5  小結(jié)

肝移植操控性免疫耐受并不是受體完全缺失免疫反應(yīng),關(guān)鍵在于移植肝抵抗或者說防御可導(dǎo)致移植物損傷的免疫反應(yīng)的能力;兒童受者在免疫抑制劑撤除過程中很少出現(xiàn)移植物丟失,這也表明成功撤除免疫抑制劑不會(huì)影響移植肝功能[65]。但免疫耐受的實(shí)現(xiàn)是一個(gè)持續(xù)的過程,最大的挑戰(zhàn)在于安全撤除免疫抑制劑后確定產(chǎn)生耐受的標(biāo)志物,因此折中的方案可能是應(yīng)用最低劑量的免疫抑制劑而保持移植物功能正常[47]。

隨著手術(shù)技術(shù)的成熟,器官移植的關(guān)注點(diǎn)逐步轉(zhuǎn)移到提高移植受者的生存質(zhì)量與遠(yuǎn)期存活。實(shí)現(xiàn)免疫耐受是器官移植在挽救患者生命的同時(shí)所達(dá)到的最理想狀態(tài)。盡管目前的研究與文獻(xiàn)尚不足以協(xié)助臨床醫(yī)生準(zhǔn)確使用免疫抑制劑及判斷是否出現(xiàn)免疫耐受,隨著科技的發(fā)展,更多、更有效的無創(chuàng)性檢測手段的出現(xiàn)將為臨床操控性免疫耐受提供助力,為今后的臨床應(yīng)用提供實(shí)驗(yàn)基礎(chǔ),為兒童肝移植提供誘導(dǎo)免疫耐受的新策略。

參考文獻(xiàn)

[1]GAO W, WANG K, MA N, et al. Living donor liver transplantations for pediatric patients withbiliary atresia in a single center: 306[J]. Chin J Organ Transplant, 2019, 41(1): 13-17.(in Chinese)

高偉, 王凱, 馬楠, 等. 親屬活體肝移植治療兒童膽道閉鎖306例臨床分析[J]. 中華器官移植雜志, 2019, 41(1): 13-17.

[2]NEPOM GT, ST CLAIR EW, TURKA LA. Challenges in the pursuit of immune tolerance[J]. Immunol Rev, 2011, 241(1): 49-62.

[3]WALDMANN H. Tolerance: An overview and perspectives[J]. Nat Rev Nephrol, 2010, 6(10): 569-576.

[4]de la GARZA RG, SAROBE P, MERINO J, et al. Trial of complete weaning from immunosuppression for liver transplant recipients: Factors predictive of tolerance[J]. Liver Transpl, 2013, 19(9): 937-944.

[5]STARZL TE, DEMETRIS AJ, TRUCCO M, et al. Cell migration and chimerism after whole-organ transplantation: The basis of graft acceptance[J]. Hepatology, 1993, 17(6): 1127-1152.

[6]MAZARIEGOS GV, REYES J, MARINO IR, et al. Weaning of immunosuppression in liver transplant recipients[J]. Transplantation, 1997, 63(2): 243-249.

[7]ORLANDO G, MANZIA T, BAIOCCHI L, et al. The Tor Vergata weaning off immunosuppression protocol in stable HCV liver transplant patients: The updated follow up at 78 months[J]. Transpl Immunol, 2008, 20(1-2): 43-47.

[8]BENSELER V, TAY SS, BOWEN DG, et al. Role of the hepatic parenchyma in liver transplant tolerance: A paradigm revisited[J]. Dig Dis, 2011, 29(4): 391-401.

[9]CRISPE IN. Immune tolerance in liver disease[J]. Hepatology, 2014, 60(6): 2109-2117.

[10]SCHILDBERG FA, SHARPE AH, TURLEY SJ. Hepatic immune regulation by stromal cells[J]. Curr Opin Immunol, 2015, 32: 1-6.

[11]DEMETRIS AJ, BELLAMY CO, GANDHI CR, et al. Functional immune anatomy of the liver-as an allograft[J]. Am J Transplant, 2016, 16(6): 1653-1680.

[12]DEMETRIS AJ, MURASE N, NAKAMURA K, et al. Immunopathology of antibodies as effectors of orthotopic liver allograft rejection[J]. Semin Liver Dis, 1992, 12(1): 51-59.

[13]FENG S, EKONG UD, LOBRITTO SJ, et al. Complete immunosuppression withdrawal and subsequent allograft function among pediatric recipients of parental living donor liver transplants[J]. JAMA, 2012, 307(3): 283-293.

[14]TAKATSUKI M, UEMOTO S, INOMATA Y, et al. Weaning of immunosuppression in living donor liver transplant recipients[J]. Transplantation, 2001, 72(3): 449-454.

[15]DIJKE IE, HOEPPLI RE, ELLIS T, et al. Discarded human thymus is a novel source of stable and long-lived therapeutic regulatory T cells[J] . Am J Transplant, 2016, 16(1): 58-71.

[16]FOOTE JB, KOK M, LEATHERMAN JM, et al. A sting agonist given with OX40 receptor and PD-L1 modulators primes immunity and reduces tumor growth in tolerized mice[J]. Cancer Immunol Res, 2017, 5(6): 468-479. 

[17]KUMAR P, ALHARSHAWI K, BHATTACHARYA P, et al. Soluble OX40L and JAG1 induce selective proliferation of functional regulatory Tcells independent of canonical TCR signaling[J]. Sci Rep, 2017, 7: 39751.

[18]BAEYENS A, SAADOUN D, BILLIARD F, et al. Effector T cells boost regulatory T cell expansion by IL-2, TNF, OX40, and plasmacytoid dendritic cells depending on the immune context[J]. J Immunol, 2015, 194(3): 999-1010. 

[19]FEHR T, SYKES M. Clinical experience with mixed chimerism to induce transplantation tolerance[J]. Transpl Int, 2008, 21(12): 1118-1135.

[20]MATHEW JM, LEVENTHAL JR, MILLER J. Microchimerism in promoting graft acceptance in clinical transplantation[J]. Curr Opin Organ Transplant, 2011, 16(4): 345-352.

[21]SCANDLING JD, BUSQUE S, SHIZURU JA, et al. Induced immune tolerance for kidney transplantation[J]. N Engl J Med, 2011, 365(14): 1359-1360.

[22]MORRIS H, DEWOLF S, ROBINS H, et al. Tracking donor-reactive T cells: Evidence for clonal deletion in tolerant kidney transplantpatients[J]. Sci Transl Med, 2015, 7(272): 272ra10.

[23]HUTCHINSON JA, RIQUELME P, SAWITZKI B, et al. Cutting edge: Immunological consequences and trafficking of human regulatory macrophages administered to renal transplant recipients[J]. J Immunol, 2011, 187(5): 2072-2078.

[24]BZIE S, PICARDA E, OSSART J, et al. Compensatory regulatory networks between CD8 T, B, and myeloid cells in organ transplantation tolerance[J]. J Immunol, 2015, 195(12): 5805-5815.

[25]WANG K, LIU K, ZHOU CL, et al. Expressions of Treg/Th17 cells in post liver transplantation acute rejection in pediatric recipients diagnosed with biliary atresia[J]. Chin J Hepatobiliary Surg, 2019, 25(1): 5-9.(in Chinese)

王凱, 劉凱, 周春雷, 等. Treg/Th17細(xì)胞在膽道閉鎖兒童肝移植術(shù)后急性排斥反應(yīng)中的變化[J]. 中華肝膽外科雜志, 2019, 25(1): 5-9.

[26]TAUBERT R, DANGER R, LONDOO MC, et al. Hepatic infiltrates in operational tolerant patients after liver transplantation show enrichment of regulatory T cells before proinflammatory genes are downregulated[J]. Am J Transplant, 2016, 16(4): 1285-1293.

[27]HAJKOVA M, HERMANKOVA B, JAVORKOVA E, et al. Mesenchymal stem cells attenuate the adverse effects of immunosuppressive drugs on distinct T cell subopulations[J]. Stem Cell Rev, 2017, 13(1): 104-115.

[28]WHITEHOUSE G, GRAY E, MASTORIDIS S, et al. IL-2 therapy restores the impaired function of regulatory T cells induced by calcineurin inhibitors[J]. Proc Natl Acad Sci U S A, 2017, 114(27): 7083-7088.

[29]KIM N, CHO SG. Overcoming immunoregulatory plasticity of mesenchymal stem cells for accelerated clinical applicationsTracking donor-reactive T cells: Evidence for clonal deletion in tolerant kidney transplantpatients[J]. Int J Hematol, 2016, 103(2): 129-137.

[30]YOUNG JS, YIN D, VANNIER AGL, et al. Equal expansion of endogenous transplant-specific regulatory T cell and recruitment into the allograft during rejection and tolerance[J]. Front Immunol, 2018, 9: 1385.

[31]TODO S, YAMASHITA K, GOTO R, et al. A pilot study of operational tolerance with a regulatory T-cell-based cell therapy in living donor liver transplantation[J]. Hepatology, 2016, 64(2): 632-643.

[32]BRUNSTEIN CG, MILLER JS, MCKENNA DH, et al. Umbilical cord blood-derived T regulatory cells to prevent GVHD: Kinetics, toxicity profile, and clinical effect[J]. Blood, 2016, 127(8): 1044-1051.

[33]WANG K, JIAGN WT, GAO W, et al. Effects of different immunosuppressants on peripheral CD4+ CD25+ FoxP3+ regulatory T cells in post liver transplant patients[J]. Chin J Gen Surg, 2015, 30(2): 135-139.(in Chinese)

王凱, 蔣文濤, 高偉, 等. 不同免疫抑制劑對(duì)肝移植術(shù)后CD4+CD25+FoxP3+調(diào)節(jié)性T細(xì)胞的影響[J]. 中華普通外科雜志, 2015, 30(2): 135-139.

[34]HULL CM, NICKOLAY LE, ESTORNINHO M, et al. Generation of human islet-specific regulatory T cells by TCR gene transfer[J] . J Autoimmun, 2017, 79: 63-73.

[35]BOARDMAN D, MAHER J, LECHLER R, et al. Antigen-specificity using chimeric antigen receptors: the future of regulatory T-cell therapy?[J]. Biochem Soc Trans, 2016, 42(2): 342-348.

[36]ZHANG Q, LU W, LIANG CL, et al. Chimeric Antigen Receptor (CAR) Treg: A promising approach to inducing immunological tolerance[J]. Front Immunol, 2018, 9: 2359.

[37]BOURDEAUX C, PIRE A, JANSSEN M, et al. Prope tolerance after pediatric liver transplantation[J]. Pediatr Transplant, 2013, 17(1): 59-64.

[38]Banff Working Group on Liver Allograft Pathology. Importance of liver biopsy findings in immunosuppression management: Biopsy monitoring and working criteria for patients with operational tolerance[J]. Liver Transpl, 2012, 18(10): 1154-1170.

[39]BENTEZ C, LONDOO MC, MIQUEL R, et al. Prospective multicenter clinical trial of immunosuppressive drug withdrawal in stable adult liver transplant recipients[J]. Hepatology, 2013, 58(5): 1824-1835

[40]DEMETRIS AJ, ISSE K. Tissue biopsy monitoring of operational Tolerance in liver allograft recipients[J]. Curr Opin Organ Transplant, 2013,18(3): 345-353.

[41]FENG S, DEMETRIS AJ, SPAIN KM, et al. Five-year histological and serological follow-up of operationally tolerant pediatric liver transplant recipients enrolled in WISP-R[J]. Hepatology, 2017, 65(2): 647-660.

[42]WAKI K, SUGAWARA Y, MIZUTA K, et al. Predicting operational tolerance in pediatric living-donor liver transplantation by absence of HLA antibodies[J]. Transplantation, 2013, 95(1): 177-183.

[43]OHE H, WAKI K, YOSHITOMI M, et al. Factors affecting operational tolerance after pediatric living-donor liver transplantation: Impact of early post-transplant events and HLA match[J]. Transpl Int, 2012, 25(1): 97-106.

[44]YOSHITOMI M, KOSHIBA T, HAGA H, et al. Requirement of protocol biopsy before and after complete cessation of immunosuppression after liver transplantation[J]. Transplantation, 2009, 87(4): 606-614.

[45]LEE JH, LEE SK, LEE HJ, et al. Withdrawal of immunosuppression in pediatric liver transplant recipients in Korea[J]. Yonsei Med J, 2009, 50(6):784-788.

[46]LIN NC, WANG HK, YEH YC, et al. Minimization or withdrawal of immunosuppressants in pediatric liver transplant recipients[J]. J Pediatr Surg, 2015, 50(12): 2128-2133.

[47]KIM JJ, MARKS SD. Long-term outcomes of children after solid organ transplantation[J]. Clinics (Sao Paulo), 2014, 69(Suppl 1): 28-38.

[48]JHUN J, LEE SH, LEE SK, et al. Serial monitoring of immune markers being represented regulatory T Cell/T helper 17 cell ratio: Indicating tolerance for tapering immunosuppression after liver transplantation[J]. Front Immunol, 2018, 9: 352.

[49]LAU AH, VITALONE MJ, HAAS K, et al. Mass cytometry reveals a distinct immunoprofile of operational tolerance in pediatric liver transplantation[J]. Pediatr Transplant, 2016, 20(8): 1072-1080.

[50]KONG X, SUN R, CHEN Y, et al. γδT cells drive myeloid-derived suppressor cell-mediated CD8+ T cell exhaustion in hepatitis B virus-induced immunotolerance[J]. J Immunol, 2014, 193(4): 1645-1653.

[51]ZHAO X, LI Y, OHE H, et al. Intragraft Vδ1 γδ T cells with a unique T-cell receptor are closely associated with pediatricsemiallogeneic liver transplant tolerance[J]. Transplantation, 2013, 95(1): 192-202.

[52]PUIG-PEY I, BOHNE F, BENTEZ C, et al. Characterization of γδ T cell subsets in organ transplantation[J]. Transpl Int, 2010, 23(10): 1045-1055.

[53]GOLDSCHMIDT I, KARCH A, MIKOLAJCZYK R, et al. Immune monitoring after pediatric liver transplantation- the prospective ChilSFree cohort study[J]. BMC Gastroenterol, 2018, 18(1): 63.

[54]LI L, WOZNIAK LJ, RODDER S, et al. A common peripheral blood gene set for diagnosis of operational tolerance in pediatric and adult liver transplantation[J]. Am J Transplant, 2012, 12(5): 1218-1228.

[55]ZHONG KB, ZHANG P, HE XS, et al. Immune parameters to serve as biomarkers and clinical significance in tolerant patients after liver transplantations[J]. Chin J Hepatobiliary Surg, 2016, 22 (2):78-81. (in Chinese)

鐘克波, 張鵬, 何曉順, 等. 肝移植術(shù)后免疫耐受患者相關(guān)指標(biāo)的變化及其臨床意義[J]. 中華肝膽外科雜志, 2016, 22 (2):78-81.

[56]KOSHIBA T, LI Y, TAKEMURA M, et al. Clinical, immunological, and pathological aspects of operational tolerance after pediatric living-donor liver transplantation[J]. Transpl Immunol, 2007, 17(2): 94-97.

[57]LIU XQ, HU ZQ, PEI YF, et al. Clinical operational tolerance in liver transplantation: state-of-the-art perspective and future prospects[J]. Hepatobiliary Pancreat Dis Int, 2013, 12(1): 12-33.

[58]DEMETRIS AJ, LUNZ JG, RANDHAWA P, et al. Monitoring of human liver and kidney allograft tolerance: A tissue/histopathology perspective[J]. Transpl Int, 2009, 22(1): 120-141.

[59]MIYAGAWA-HAYASHINO A, YOSHIZAWA A, UCHIDA Y, et al. Progressive graft fibrosis and donor-specific human leukocyte antigen antibodies in pediatric late liver allografts[J]. Liver Transpl, 2012, 18(11): 1333-1342.

[60]SANADA Y, MATSUMOTO K, URAHASHI T, et al. Protocol liver biopsy is the only examination that can detect mid-term graft fibrosis after pediatric liver transplantation[J]. World J Gastroenterol, 2014, 20(21): 6638-6650.

[61]VENTURI C, SEMPOUX C, QUINONES JA, et al. Dynamics of allograft fibrosis in pediatric liver transplantation[J]. Am J Transplant, 2014, 14(7): 1648-1656.

[62]PONS JA, RAMREZ P, REVILLA-NUIN B, et al. Immunosuppression withdrawal improves long-term metabolic parameters, cardiovascular risk factors and renal function in liver transplant patients[J]. Clin Transplant, 2009, 23(3): 329-336.

[63]PERITO ER, MOHAMMAD S, ROSENTHAL P, et al. Posttransplant metabolic syndrome in the withdrawal of immunosuppression in Pediatric Liver Transplant Recipients(WISP-R) pilot trial[J]. Am J Transplant, 2015, 15(3): 779-785.

[64]ZHENG HB, WATKINS B, TKACHEV V, et al. The knife’s edge of tolerance: Inducing stable multilineage mixed chimerism but with a significant risk of CMV reactivation and disease in rhesus macaques[J]. Am J Transplant, 2017, 17(3): 657-670.

[65]FENG S, BUCUVALAS J. Tolerance after liver transplantation: Where are we?[J]. Liver Transpl, 2017, 23(12): 1601-1614.

    轉(zhuǎn)藏 分享 獻(xiàn)花(0

    0條評(píng)論

    發(fā)表

    請(qǐng)遵守用戶 評(píng)論公約

    類似文章 更多