1.了解集合的含義,體會(huì)元素與集合的屬于關(guān)系;能用自然語(yǔ)言、圖形語(yǔ)言、集合語(yǔ)言(列舉法或描述法)描述不同的具體問(wèn)題; 2.理解集合之間包含與相等的含義,能識(shí)別給定集合的子集;在具體情境中了解全集與空集的含義; 3.理解兩個(gè)集合的并集與交集的含義,會(huì)求兩個(gè)簡(jiǎn)單集合的并集與交集;理解在給定集合中一個(gè)子集的補(bǔ)集的含義,會(huì)求給定子集的補(bǔ)集;能使用韋恩(Venn)圖表達(dá)集合間的基本關(guān)系及集合的基本運(yùn)算.
知 識(shí) 梳 理 1.元素與集合 (1)集合中元素的三個(gè)特性:確定性、互異性、無(wú)序性. (2)元素與集合的關(guān)系是屬于或不屬于,表示符號(hào)分別為∈和?. (3)集合的三種表示方法:列舉法、描述法、圖示法. 2.集合間的基本關(guān)系 (1)子集:若對(duì)任意x∈A,都有x∈B,則A?B或B?A. (2)真子集:若A?B,且集合B中至少有一個(gè)元素不屬于集合A,則AB或BA. (3)相等:若A?B,且B?A,則A=B. (4)空集的性質(zhì):?是任何集合的子集,是任何非空集合的真子集. 3.集合的基本運(yùn)算 4.集合關(guān)系與運(yùn)算的常用結(jié)論 (1)若有限集A中有n個(gè)元素,則A的子集有2n個(gè),真子集有2n-1個(gè). (2)子集的傳遞性:A?B,B?C?A?C. (3)A?B?A∩B=A?A∪B=B. (4)?U(A∩B)=(?UA)∪(?UB),?U(A∪B)=(?UA)∩(?UB). 思想方法 1.集合中的元素的三個(gè)特征,特別是無(wú)序性和互異性在解題時(shí)經(jīng)常用到.解題后要進(jìn)行檢驗(yàn),要重視符號(hào)語(yǔ)言與文字語(yǔ)言之間的相互轉(zhuǎn)化. 2.對(duì)連續(xù)數(shù)集間的運(yùn)算,借助數(shù)軸的直觀性,進(jìn)行合理轉(zhuǎn)化;對(duì)已知連續(xù)數(shù)集間的關(guān)系,求其中參數(shù)的取值范圍時(shí),要注意單獨(dú)考察等號(hào)能否取到. 3.對(duì)離散的數(shù)集間的運(yùn)算,或抽象集合間的運(yùn)算,可借助Venn圖.這是數(shù)形結(jié)合思想的又一體現(xiàn).
易錯(cuò)防范 1.集合問(wèn)題解題中要認(rèn)清集合中元素的屬性(是數(shù)集、點(diǎn)集還是其他類(lèi)型集合),要對(duì)集合進(jìn)行化簡(jiǎn). 2.空集是任何集合的子集,是任何非空集合的真子集,時(shí)刻關(guān)注對(duì)空集的討論,防止漏解. 3.解題時(shí)注意區(qū)分兩大關(guān)系:一是元素與集合的從屬關(guān)系;二是集合與集合的包含關(guān)系. 4.Venn圖圖示法和數(shù)軸圖示法是進(jìn)行集合交、并、補(bǔ)運(yùn)算的常用方法,其中運(yùn)用數(shù)軸圖示法時(shí)要特別注意端點(diǎn)是實(shí)心還是空心. |
|