日韩黑丝制服一区视频播放|日韩欧美人妻丝袜视频在线观看|九九影院一级蜜桃|亚洲中文在线导航|青草草视频在线观看|婷婷五月色伊人网站|日本一区二区在线|国产AV一二三四区毛片|正在播放久草视频|亚洲色图精品一区

分享

中國(guó)遺傳學(xué)會(huì)遺傳咨詢分會(huì)《ACMG遺傳變異分類標(biāo)準(zhǔn)中文版專家共識(shí)》

 teszsz 2017-02-19
+目錄

遺傳變異分類標(biāo)準(zhǔn)與指南

免責(zé)聲明

摘要

Key Words 關(guān)鍵詞

1.引言

2.方法

3.總論

3.1 術(shù)語(yǔ)

3.2 命名

3.3 文獻(xiàn)及數(shù)據(jù)庫(kù)使用

3.4 生物信息學(xué)計(jì)算預(yù)測(cè)程序

4. 序列變異解讀的擬定標(biāo)準(zhǔn)

4.1 PVS1 無(wú)功能變異

4.2 PS1 突變?yōu)橥话被?br>
4.3 PS2 PM6 新發(fā)變異

4.4 PS3 BS3 功能研究

4.5 PS4 PM2 BA1 BS1 BS2 變異頻率及對(duì)照人群的使用

4.6 PM1 熱點(diǎn)突變和/或關(guān)鍵的、得到確認(rèn)的功能域

4.7 PM3 BP2 順式/反式檢測(cè)

4.8 PM4 BP3 由于框內(nèi)缺失/插入和終止密碼子喪失導(dǎo)致的蛋白長(zhǎng)度改變

4.9 PM5 同一位置新的錯(cuò)義變異

4.10 PP1 BS4 共分離分析

4.11 PP2 BP1 變異譜

4.12 PP3 BP4 生物信息分析數(shù)據(jù)

4.13 PP4 表型支持

4.14 PP5 BP6 可靠的來(lái)源

4.15 BP5 可替代基因座觀察

4.16 BP7 同義變異

5. 序列變異報(bào)導(dǎo)

5.1 結(jié)果

5.2 解讀

5.3 方法學(xué)

5.4 患者維權(quán)團(tuán)體、臨床實(shí)驗(yàn)和研究的獲取

5.5 變異再分析

5.6 變異的驗(yàn)證

6. 特殊變異

6.1 基于檢測(cè)結(jié)果對(duì)GUS變異的評(píng)估和報(bào)告

6.2 在健康個(gè)體中評(píng)估變異或作為偶然發(fā)現(xiàn)

6.3 線粒體變異

6.4 藥物基因組學(xué)

6.5 常見(jiàn)復(fù)雜疾病

6.6 體細(xì)胞變異

7. 醫(yī)療工作者如何使用這些指南和建議

8 參考文獻(xiàn)(略)

圖1

表1 人群數(shù)據(jù)庫(kù),疾病特異性數(shù)據(jù)庫(kù)和序列數(shù)據(jù)庫(kù)

表2 生物信息分析工具

表3 致病變異分級(jí)標(biāo)準(zhǔn)

表4 良性變異分類標(biāo)準(zhǔn)

表5 遺傳變異分類聯(lián)合標(biāo)準(zhǔn)規(guī)則

表6 評(píng)估人群中變異頻率來(lái)策劃變異分類

遺傳變異分類標(biāo)準(zhǔn)與指南

免責(zé)聲明

These ACMG Standards and Guidelines were developed primarily as an educational resource for clinical laboratory geneticists to help them provide quality clinical laboratory services. Adherence to these standards and guidelines is voluntary and does not necessarily assure a successful medical outcome. These Standards and Guidelines should not be considered inclusive of all proper procedures and tests or exclusive of other procedures and tests that are reasonably directed to obtaining the same results. In determining the propriety of any specific procedure or test, the clinical laboratory geneticist should apply his or her own professional judgment to the specific circumstances presented by the individual patient or specimen. Clinical laboratory geneticists are encouraged to document in the patient’s record the rationale for the use of a particular procedure or test, whether or not it is in conformance with these Standards and Guidelines. They also are advised to take notice of the date any particular guideline was adopted and to consider other relevant medical and scientific information that becomes available after that date. It also would be prudent to consider whether intellectual property interests may restrict the performance of certain tests and other procedures.

ACMG制定的標(biāo)準(zhǔn)與指南作為教育資源旨在幫助臨床遺傳學(xué)家提供優(yōu)質(zhì)的臨床檢驗(yàn)服務(wù)。該標(biāo)準(zhǔn)和指南遵循自愿原則,且不一定能夠確保遵循該標(biāo)準(zhǔn)和指南的醫(yī)療結(jié)果是成功的。不要認(rèn)為該標(biāo)準(zhǔn)與指南包含所有合適的流程和檢測(cè),也不排除其他可以獲得相同結(jié)果的流程和檢測(cè)的合理方法。臨床實(shí)驗(yàn)室遺傳學(xué)家應(yīng)該用自己的專業(yè)知識(shí),依據(jù)個(gè)體病人或樣本的具體情況來(lái)判斷任一具體的流程或檢測(cè)的合理性。我們鼓勵(lì)臨床實(shí)驗(yàn)室遺傳學(xué)家記錄對(duì)病人使用的用某一具體流程或檢測(cè)的原理,不管這個(gè)原理與這些標(biāo)準(zhǔn)與指南是否符合。同時(shí)建議臨床實(shí)驗(yàn)室遺傳學(xué)家關(guān)注指南的采用時(shí)間,應(yīng)考慮到此后更新的一些相關(guān)醫(yī)療和科學(xué)信息。還需謹(jǐn)慎考慮到知識(shí)產(chǎn)權(quán)可能會(huì)限制某些檢測(cè)或流程的使用。

摘要

The American College of Medical Genetics and Genomics (ACMG) previously developed guidance for the interpretation of sequence variants.1 In the past decade, sequencing technology has evolved rapidly with the advent of high-throughput next-generation sequencing. By adopting and leveraging next-generation sequencing, clinical laboratories are now performing an ever-increasing catalogue of genetic testing spanning genotyping, single genes, gene panels, exomes, genomes, transcriptomes, and epigenetic assays for genetic disorders. By virtue of increased complexity, this shift in genetic testing has been accompanied by new challenges in sequence interpretation. In this context the ACMG convened a workgroup in 2013 comprising representatives from the ACMG, the Association for Molecular Pathology (AMP), and the College of American Pathologists to revisit and revise the standards and guidelines for the interpretation of sequence variants. The group consisted of clinical laboratory directors and clinicians. This report represents expert opinion of the workgroup with input from ACMG, AMP, and College of American Pathologists stakeholders. These recommendations primarily apply to the breadth of genetic tests used in clinical laboratories, including genotyping, single genes, panels, exomes, and genomes. This report recommends the use of specific standard terminology—“pathogenic,” “l(fā)ikely pathogenic,” “uncertain significance,” “l(fā)ikely benign,” and “benign”—to describe variants identified in genes that cause Mendelian disorders. Moreover, this recommendation describes a process for classifying variants into these five categories based on criteria using typical types of variant evidence (e.g., population data, computational data, functional data, segregation data). Because of the increased complexity of analysis and interpretation of clinical genetic testing described in this report, the ACMG strongly recommends that clinical molecular genetic testing should be performed in a Clinical Laboratory Improvement Amendments–approved laboratory, with results interpreted by a board-certified clinical molecular geneticist or molecular genetic pathologist or the equivalent.

美國(guó)醫(yī)學(xué)遺傳學(xué)與基因組學(xué)學(xué)會(huì)(The American College of Medical Genetics and Genomics, ACMG)曾制定過(guò)序列變異解讀指南。在過(guò)去的十年中,隨著新一代高通量測(cè)序的出現(xiàn),測(cè)序技術(shù)有了快速發(fā)展。利用新一代測(cè)序技術(shù),臨床實(shí)驗(yàn)室檢測(cè)遺傳性疾病的產(chǎn)品種類不斷增加,包括基因分型,單基因,基因panel,外顯子組,基因組,轉(zhuǎn)錄組和表觀遺傳學(xué)檢測(cè)。隨著技術(shù)的復(fù)雜性日益增加,基因檢測(cè)在測(cè)序解讀的方面不斷面臨著新挑戰(zhàn)。因此ACMG在2013年成立了一個(gè)工作組來(lái)重新審視和修訂序列變異解讀的標(biāo)準(zhǔn)和指南,工作組中包括ACMG、分子病理協(xié)會(huì)(the Association for Molecular Pathology, AMP)和美國(guó)病理學(xué)家協(xié)會(huì)(the College of American Pathologists, CAP)的代表。該工作組由臨床實(shí)驗(yàn)室主任和臨床醫(yī)生組成。本報(bào)告代表了工作組中來(lái)自ACMG、AMP和CAP的專家意見(jiàn)。本報(bào)告提出的建議可應(yīng)用于臨床實(shí)驗(yàn)室的各種基因檢測(cè)方法,包括基因分型、單基因、基因panel、外顯子組和基因組。本報(bào)告建議使用特定標(biāo)準(zhǔn)術(shù)語(yǔ)來(lái)描述孟德爾疾病相關(guān)的基因變異——“致病”、“可能致病”、“意義不明確”、“可能良性”和“良性”。此外,本報(bào)告描述了對(duì)變異進(jìn)行五級(jí)分類的標(biāo)準(zhǔn)過(guò)程,該標(biāo)準(zhǔn)需基于變異證據(jù)的典型數(shù)據(jù)類型(如人口數(shù)據(jù),計(jì)算數(shù)據(jù),功能數(shù)據(jù),共分離數(shù)據(jù))。由于臨床基因檢測(cè)分析和解讀中不斷增加的復(fù)雜性,ACMG強(qiáng)烈建議臨床分子基因檢測(cè)應(yīng)在符合臨床實(shí)驗(yàn)室改進(jìn)修正案(CLIA)認(rèn)證的實(shí)驗(yàn)室中進(jìn)行,其檢測(cè)結(jié)果應(yīng)由通過(guò)職業(yè)認(rèn)證的臨床分子遺傳學(xué)家或分子遺傳病理學(xué)家或相同職能的專業(yè)人員解讀。

Key Words 關(guān)鍵詞

ACMG laboratory guideline; clinical genetic testing; interpretation; reporting; sequence variant terminology; variant reporting

ACMG實(shí)驗(yàn)室指南;臨床基因檢測(cè);解讀;報(bào)告;序列變異術(shù)語(yǔ);變異報(bào)告

1.引言

Clinical molecular laboratories are increasingly detecting novel sequence variants in the course of testing patient specimens for a rapidly increasing number of genes associated with genetic disorders. While some phenotypes are associated with a single gene, many are associated with multiple genes. Our understanding of the clinical significance of any given sequence variant falls along a gradient, ranging from those in which the variant is almost certainly pathogenic for a disorder to those that are almost certainly benign. While the previous American College of Medical Genetics and Genomics (ACMG) recommendations provided interpretative categories of sequence variants and an algorithm for interpretation, the recommendations did not provide defined terms or detailed variant classification guidance.1 This report describes updated standards and guidelines for the classification of sequence variants using criteria informed by expert opinion and empirical data.

由于遺傳疾病患者的樣本檢測(cè)基因數(shù)目快速增加,臨床分子實(shí)驗(yàn)室也檢測(cè)到更多的新的序列變異。某些表型僅與單個(gè)基因相關(guān),而多數(shù)表型都與多個(gè)基因相關(guān)。我們對(duì)任何給定的序列變異臨床意義的解讀具有梯度性,從幾乎肯定的某個(gè)疾病的致病性變異到幾乎肯定的良性變異。雖然ACMG之前的建議提供了序列變異的解讀分類及解讀的算法,但并沒(méi)有提供定義的術(shù)語(yǔ)或詳細(xì)的變異分類指導(dǎo)。本研究依據(jù)專家意見(jiàn)和經(jīng)驗(yàn)數(shù)據(jù),闡述了最新的序列變異分類標(biāo)準(zhǔn)和指南。

2.方法

In 2013 a workgroup consisting of ACMG, Association for Molecular Pathology (AMP), and College of American Pathologists members, representing clinical laboratory directors and clinicians, was formed with the goal of developing a recommendation for the use of standard terminology for classifying sequence variants using available evidence weighted according to a system developed through expert opinion, workgroup consensus, and community input. To assess the views of the clinical laboratory community, surveys were sent to over 100 sequencing laboratories in the United States and Canada that were listed in GeneTests.org, requesting input on terminology preferences and evaluation of evidence for classifying variants. Laboratory testing experience included rare disease as well as pharmacogenomics and somatic cancer testing. The first survey, aimed at assessing terminology preferences, was sent in February 2013, and the results were presented in an open forum at the 2013 ACMG annual meeting including over 75 attendees. Survey respondents represented more than 45 laboratories in North America. The outcome of the survey and open forum indicated that (i) a five-tier terminology system using the terms “pathogenic,” “l(fā)ikely pathogenic,” “uncertain significance,” “l(fā)ikely benign,” and “benign” was preferred and already in use by a majority of laboratories, and (ii) the first effort of the workgroup should focus on Mendelian and mitochondrial variants.

2013年,ACMG、AMP和CAP的成員,代表臨床實(shí)驗(yàn)室主任和臨床醫(yī)生成立了一個(gè)工作組,該工作組依據(jù)專家建議、工作組共識(shí)和公眾反饋開發(fā)了一種可以對(duì)現(xiàn)有的證據(jù)進(jìn)行加權(quán)的系統(tǒng),并應(yīng)用此系統(tǒng)對(duì)序列變異進(jìn)行標(biāo)準(zhǔn)分類。為了評(píng)估臨床實(shí)驗(yàn)室的觀點(diǎn),對(duì)列入GeneTests.org上位于美國(guó)和加拿大的超過(guò)100家的測(cè)序?qū)嶒?yàn)室進(jìn)行了調(diào)研,要求各實(shí)驗(yàn)室填寫偏好的術(shù)語(yǔ)及變異分類的評(píng)估證據(jù)。這些實(shí)驗(yàn)室檢測(cè)都包括罕見(jiàn)病、藥物基因組學(xué)和癌癥體細(xì)胞突變檢測(cè)。2013年2月開展旨在評(píng)估術(shù)語(yǔ)喜好第一次調(diào)研,在2013年ACMG年會(huì)公開論壇上公布了調(diào)研結(jié)果,年會(huì)有超過(guò)75個(gè)與會(huì)者參加。調(diào)研實(shí)驗(yàn)室中超過(guò)45個(gè)在北美,調(diào)研和公開論壇的結(jié)果表明:(i) 五級(jí)術(shù)語(yǔ)系統(tǒng)“致病”、“可能致病”、“意義不明確”、“可能良性”和“良性”是優(yōu)選,且已在多數(shù)實(shí)驗(yàn)室使用;(ii) 工作組的首要重點(diǎn)應(yīng)著重于孟德爾疾病和線粒體變異。

In the first survey, laboratories also were asked to provide their protocols for variant assessment, and 11 shared their methods. By analyzing all the protocols submitted, the workgroup developed a set of criteria to weight variant evidence and a set of rules for combining criteria to arrive at one of the five classification tiers. Workgroup members tested the scheme within their laboratories for several weeks using variants already classified in their laboratories and/or by the broader community. In addition, typical examples of variants harboring the most common types of evidence were tested for classification assignment to ensure the system would classify those variants according to current approaches consistently applied by workgroup members. A second survey was sent in August 2013 to the same laboratories identified through GeneTests. org as well as through AMP’s listserv of ~2,000 members, along with the proposed classification scheme and a detailed supplement describing how to use each of the criteria. Laboratories were asked to use the scheme and to provide feedback as to the suitability and relative weighting of each criteria, the ease of use of the classification system, and whether they would adopt such a system in their own laboratory. Responses from over 33 laboratories indicated majority support for the proposed approach, and feedback further guided the development of the proposed standards and guidelines.

在第一次調(diào)研中,參與的實(shí)驗(yàn)室被要求提供他們的變異評(píng)價(jià)方法,最終有11個(gè)實(shí)驗(yàn)室提供并分享了他們的變異評(píng)估方法。通過(guò)分析所有提交的方法,工作組制定了一組準(zhǔn)則,包括變異證據(jù)評(píng)估的加權(quán)標(biāo)準(zhǔn)系統(tǒng)和應(yīng)用這個(gè)標(biāo)準(zhǔn)將變異歸類為五類的分類規(guī)則。在幾周的時(shí)間里,工作組成員通過(guò)使用在實(shí)驗(yàn)室內(nèi)或其他機(jī)構(gòu)內(nèi)已進(jìn)行分類的變異,來(lái)檢測(cè)這個(gè)方案。另外,還將典型變異的常見(jiàn)證據(jù)進(jìn)行分類,來(lái)測(cè)試現(xiàn)有方法與工作組的分類系統(tǒng)的分類結(jié)果是否一致。2013年8月,第二次調(diào)研在GeneTests.org上的相同實(shí)驗(yàn)室以及AMP清單上的約2000個(gè)單位中進(jìn)行,同時(shí)給各單位提供了分類方案和詳細(xì)的方案補(bǔ)充說(shuō)明。要求各實(shí)驗(yàn)室使用分類方案并對(duì)以下內(nèi)容進(jìn)行反饋,包括各標(biāo)準(zhǔn)的適宜性和每個(gè)標(biāo)準(zhǔn)的相對(duì)權(quán)重、分類體系的易用性以及他們是否會(huì)在自己的實(shí)驗(yàn)室采用這樣的系統(tǒng)。來(lái)自超過(guò)33個(gè)實(shí)驗(yàn)室的答復(fù)表明多數(shù)實(shí)驗(yàn)室支持所推薦的方案,而且他們的反饋會(huì)進(jìn)一步指導(dǎo)標(biāo)準(zhǔn)和指南的發(fā)展。

In November 2013 the workgroup held a workshop at the AMP meeting with more than 50 attendees, presenting the revised classification criteria and two potential scoring systems. One system is consistent with the approach presented here and the other is a point system whereby each criterion is given a number of points, assigning positive points for pathogenic criteria and negative points for benign criteria, with the total defining the variant class. With an audience-response system, the participants were asked how they would weight each criterion (as strong, moderate or supporting, or not used) during evaluation of variant evidence. Again, the responses were incorporated into the classification system presented here. It should be noted that while the majority of respondents did favor a point system, the workgroup felt that the assignment of specific points for each criterion implied a quantitative level of understanding of each criterion that is currently not supported scientifically and does not take into account the complexity of interpreting genetic evidence.

2013年11月,工作組在AMP會(huì)議期間舉行了超過(guò)50人參加的研討會(huì),提出了修訂后的分類標(biāo)準(zhǔn)和兩個(gè)評(píng)分系統(tǒng)。一個(gè)系統(tǒng)與這里介紹的方法是一致的,另一個(gè)系統(tǒng)則是一個(gè)分?jǐn)?shù)系統(tǒng),每一項(xiàng)標(biāo)準(zhǔn)都有一個(gè)分?jǐn)?shù),正分?jǐn)?shù)為致病標(biāo)準(zhǔn),負(fù)分?jǐn)?shù)為良性標(biāo)準(zhǔn),根據(jù)總分?jǐn)?shù)進(jìn)行變異分類。參與者使用此系統(tǒng)并進(jìn)行反饋,回答在評(píng)估變異證據(jù)過(guò)程中他們?nèi)绾螜?quán)衡各個(gè)標(biāo)準(zhǔn)(如強(qiáng),中度或支持,或不使用)。參與者的反饋結(jié)果經(jīng)分析后會(huì)再次綜合到這里介紹的分類系統(tǒng)中。但要指出的是,雖然大多數(shù)調(diào)查對(duì)象更傾向于分?jǐn)?shù)評(píng)價(jià)系統(tǒng),但本工作組認(rèn)為,每個(gè)標(biāo)準(zhǔn)中具體分?jǐn)?shù)的設(shè)置量化了對(duì)每個(gè)標(biāo)準(zhǔn)的理解,但是這一量化指標(biāo)目前缺乏科學(xué)依據(jù),并且沒(méi)有考慮解讀遺傳證據(jù)解讀時(shí)的復(fù)雜性。

The workgroup also evaluated the literature for recommendations from other professional societies and working groups that have developed variant classification guidelines for wellstudied genes in breast cancer, colon cancer, and cystic fibrosis and statistical analysis programs for quantitative evaluation of variants in select diseases.While those variant analysis guidelines are useful in a specific setting, it was difficult to apply their proposed criteria to all genes and in different laboratory settings. The variant classification approach described in this article is meant to be applicable to variants in all Mendelian genes, whether identified by single gene tests, multigene panels, exome sequencing, or genome sequencing. We expect that this variant classification approach will evolve as technology and knowledge improve. We should also note that those working in specific disease groups should continue to develop more focused guidance regarding the classification of variants in specific genes given that the applicability and weight assigned to certain criteria may vary by gene and disease.

工作組還評(píng)估了文獻(xiàn)中推薦的其他專業(yè)協(xié)會(huì)和工作組在乳腺癌、結(jié)腸癌和囊性纖維化中已制定的變異分類指南,以及在特定疾病中應(yīng)用統(tǒng)計(jì)分析來(lái)進(jìn)行變異定量評(píng)估的方法。這些變異分析指南在一定條件下是有效的,但很難將他們推薦的標(biāo)準(zhǔn)應(yīng)用于所有基因變異和不同的實(shí)驗(yàn)室條件。本文描述的變異分類方法適用于所有孟德爾基因變異,包括單基因測(cè)序,多基因panel,外顯子組測(cè)序和基因組測(cè)序發(fā)現(xiàn)的變異。我們期望這種變異分類方法會(huì)隨著技術(shù)和知識(shí)水平的提高而與時(shí)俱進(jìn)。由于不同基因和不同疾病中的應(yīng)用和加權(quán)評(píng)估的標(biāo)準(zhǔn)可能不同,那些特定疾病組的工作應(yīng)繼續(xù),以制定更有針對(duì)性的具體基因的變異分類指南。

3.總論

3.1 術(shù)語(yǔ)

A mutation is defined as a permanent change in the nucleotide sequence, whereas a polymorphism is defined as a variant with a frequency above 1%. The terms “mutation” and “polymorphism,” however, which have been used widely, often lead to confusion because of incorrect assumptions of pathogenic and benign effects, respectively. Thus, it is recommended that both terms be replaced by the term “variant” with the following modifiers: (i) pathogenic, (ii) likely pathogenic, (iii) uncertain significance, (iv) likely benign, or (v) benign. Although these modifiers may not address all human phenotypes, they comprise a five-tier system of classification for variants relevant to Mendelian disease as addressed in this guidance. It is recommended that all assertions of pathogenicity (including “l(fā)ikely pathogenic”) be reported with respect to a condition and inheritance pattern (e.g., c.1521_1523delCTT (p.Phe508del), pathogenic, cystic fibrosis, autosomal recessive).

突變是指核苷酸序列的永久性改變,而多態(tài)性是指頻率超過(guò)1%的變異。雖然術(shù)語(yǔ)“突變”和“多態(tài)性”已被廣泛使用,但由于致病性和良性結(jié)果的不正確假設(shè)往往會(huì)被混淆。因此,建議使用“變異”加以下修飾詞替代上述兩個(gè)術(shù)語(yǔ):i) 致病性,ii) 可能致病性,iii) 意義不明確,iv) 可能良性,或v) 良性。雖然這些修飾詞不可能適用所有的人類表型,但是正如本指南提出的它包含了孟德爾疾病相關(guān)的變異分類五級(jí)系統(tǒng)。建議所有致病性(包括可能致?。┑慕Y(jié)論需要注明疾病及相應(yīng)的遺傳模式(例如c.1521_1523delCTT (p.Phe508del),致病性,囊性纖維化,常染色體隱性遺傳)。

It should be noted that some laboratories may choose to have additional tiers (e.g., subclassification of variants of uncertain significance, particularly for internal use), and this practice is not considered inconsistent with these recommendations. It should also be noted that the terms recommended here differ somewhat from the current recommendations for classifying copy-number variants detected by cytogenetic microarray.6 The schema recommended for copy-number variants, while also including five tiers, uses “uncertain clinical significance— likely pathogenic” and “uncertain clinical significance—likely benign.” The majority of the workgroup was not supportive of using “uncertain significance” to modify the terms “l(fā)ikely pathogenic” or “l(fā)ikely benign” given that it was felt that the criteria presented here to classify variants into the “l(fā)ikely” categories included stronger evidence than outlined in the copy-number variant guideline and that combining these two categories would create confusion for the health-care providers and individuals receiving clinical reports. However, it was felt that the use of the term “l(fā)ikely” should be restricted to variants where the data support a high likelihood that it is pathogenic or a high likelihood that it is benign. Although there is no quantitative definition of the term “l(fā)ikely,” guidance has been proposed in certain variant classification settings. A survey of the community during an ACMG open forum, however, suggested a much wider range of uses of the term “l(fā)ikely.” Recognizing this, we propose that the terms “l(fā)ikely pathogenic” and “l(fā)ikely benign” be used to mean greater than 90% certainty of a variant either being diseasecausing or benign to provide laboratories with a common, albeit arbitrary, definition. Similarly, the International Agency for Research on Cancer guideline supports a 95% level of certainty of pathogenicity, but the workgroup (confirmed by feedback during the ACMG open forum) felt that clinicians and patients were willing to tolerate a slightly higher chance of error, leading to the 90% decision. It should also be noted that at present most variants do not have data to support a quantitative assignment of variant certainty to any of the five categories given the heterogeneous nature of most diseases. It is hoped that over time experimental and statistical approaches to objectively assign pathogenicity confidence to variants will be developed and that more rigorous approaches to defining what the clinical community desires in terms of confidence will more fully inform terminologies and likelihoods.

應(yīng)當(dāng)注意的是,一些實(shí)驗(yàn)室可能選擇其他等級(jí)(例如,意義不明確的變異的子分類,特別是內(nèi)部使用時(shí)),并且這種做法被認(rèn)為與這些建議一致。還應(yīng)當(dāng)指出的是,某種程度上本指南推薦的術(shù)語(yǔ)與細(xì)胞遺傳學(xué)基因芯片檢測(cè)的拷貝數(shù)變異分類不同。雖然拷貝數(shù)變異分類系統(tǒng)也包括五級(jí)分類標(biāo)準(zhǔn),但是它使用“臨床意義不明確-可能致病性”和“臨床意義不明確-可能良性”。這里提出的“可能性”變異分類標(biāo)準(zhǔn),應(yīng)包括比拷貝數(shù)變異指南概述中更有力的證據(jù),并且合并這兩個(gè)“可能性”分類會(huì)使醫(yī)療工作者和臨床報(bào)告接收者產(chǎn)生混淆,因此大多數(shù)工作組不支持使用“意義不明確”來(lái)修飾“可能致病性”或“可能良性”。然而,有人認(rèn)為“可能性”一詞的使用應(yīng)限于有數(shù)據(jù)支持其極高可能為致病性或良性的變異。雖然對(duì)“可能性”一詞沒(méi)有量化界定,但是在某些變異分類中提出了指導(dǎo)。然而,在ACMG開放論壇的一項(xiàng)調(diào)查中,建議術(shù)語(yǔ)“可能性”具有更廣泛的使用。認(rèn)識(shí)到這一點(diǎn),我們建議術(shù)語(yǔ)“可能致病”和“可能良性”用來(lái)說(shuō)明一個(gè)變異具有大于90%的可能引起致病或者是良性,盡管比較隨意,但是給實(shí)驗(yàn)室提供一種常見(jiàn)的定義。同樣,國(guó)際癌癥機(jī)構(gòu)指南支持致病性的確定水平為95%,但是工作組(通過(guò)ACMG公開論壇期間的反饋確認(rèn))認(rèn)為,臨床醫(yī)生和患者愿意容忍略高的錯(cuò)誤機(jī)會(huì),從而做出確定性為90%的決定。還應(yīng)當(dāng)指出的是,考慮到多數(shù)疾病的異質(zhì)性,目前大多數(shù)變異沒(méi)有數(shù)據(jù)能支持將它們列入上述五個(gè)變異類別。希望隨著時(shí)間的推移,能夠建立實(shí)驗(yàn)和統(tǒng)計(jì)方法來(lái)客觀地賦予變異的致病可信度,以及有更嚴(yán)格的方法來(lái)定義臨床領(lǐng)域所期望的可信度,充分說(shuō)明術(shù)語(yǔ)及其可能性。

The use of new terminologies may require education of the community. Professional societies are encouraged to engage in educating all laboratories as well as health-care providers on the use of these terms, and laboratories also are encouraged to directly educate their ordering physicians.

新術(shù)語(yǔ)的使用可能需要該領(lǐng)域的培訓(xùn),鼓勵(lì)專業(yè)團(tuán)隊(duì)對(duì)所有實(shí)驗(yàn)室和醫(yī)療工作者進(jìn)行這些術(shù)語(yǔ)的培訓(xùn),也鼓勵(lì)實(shí)驗(yàn)室直接對(duì)其主治醫(yī)生進(jìn)行培訓(xùn)教育。

3.2 命名

A uniform nomenclature, informed by a set of standardized criteria, is recommended to ensure the unambiguous designation of a variant and enable effective sharing and downstream use of genomic information. A standard gene variant nomenclature (http://www./mutnomen) is maintained and versioned by the Human Genome Variation Society (HGVS), and its use is recommended as the primary guideline for determining variant nomenclature except as noted. Laboratories should note the version being used in their test methods. Tools are available to provide correct HGVS nomenclature for describing variants (https://). Clinical reports should include sequence reference(s) to ensure unambiguous naming of the variant at the DNA level, as well as to provide coding and protein nomenclature to assist in functional interpretations (e.g., “g.” for genomic sequence, “c.” for coding DNA sequence, “p.” for protein, “m.” for mitochondria).

建議通過(guò)一套規(guī)范的標(biāo)準(zhǔn)制定的統(tǒng)一命名來(lái)確保變異的明確定義,并實(shí)現(xiàn)基因組信息的有效共享和下游使用。標(biāo)準(zhǔn)的基因變異命名由人類基因組變異協(xié)會(huì)(the Human Genome Variation Society, HGVS)維護(hù)和版本化,除非另有說(shuō)明,一般推薦該命名法作為確定變異命名的首要準(zhǔn)則。實(shí)驗(yàn)室應(yīng)該注意他們?cè)趯?shí)驗(yàn)方法中所使用的版本??衫霉ぞ咛峁┱_的HGVS命名來(lái)描述變異 (http://)。臨床報(bào)告應(yīng)該包含參考序列以確保該變異在DNA水平上的明確命名,并提供編碼和蛋白質(zhì)命名法來(lái)協(xié)助功能注釋(例如,“g”為基因組序列,“c”為編碼DNA序列,“p”為蛋白質(zhì),“m”為線粒體)。

The coding nomenclature should be described using the “A” of the ATG translation initiation codon as position number 1. Where historical alternate nomenclature has been used, current nomenclature should be used with an additional notation of the historical naming. The reference sequence should be complete and derived from either the National Center for Biotechnology Information RefSeq database (http://www.ncbi.nlm./RefSeq/) with the version number or the Locus Reference Genomic database (http:// www.). Genomic coordinates should be used and defined according to a standard genome build (e.g., hg19) or a genomic reference sequence that covers the entire gene (including the 5′ and 3′ untranslated regions and promoter). A reference transcript for each gene should be used and provided in the report when describing coding variants. The transcript should represent either the longest known transcript and/or the most clinically relevant transcript. Communitysupported reference transcripts can often be identified through Locus Reference Genomic, the Consensus CDS Database, the Human Gene Mutation Database (http://www.hgmd. ), ClinVar (http://www.ncbi.nlm./clinvar), or a locus-specific database. However, laboratories should evaluate the impact of the variant on all clinically relevant transcripts, including alternate transcripts that contain additional exons or extended untranslated regions, when there are known variants in these regions that are clinically interpretable.

編碼命名應(yīng)該使用翻譯起始密碼子ATG中的“A”作為位置編號(hào)1來(lái)描述。在歷史性替換命名已被使用的地方,當(dāng)今命名應(yīng)該對(duì)歷史命名進(jìn)行額外注釋。參考序列應(yīng)該是完整的,并來(lái)源于具有版本號(hào)的生物技術(shù)信息參考序列數(shù)據(jù)庫(kù)美國(guó)中心(http://www.ncbi.nlm./Refseq/)或LRG數(shù)據(jù)庫(kù)(http://www.)。根據(jù)標(biāo)準(zhǔn)基因組構(gòu)建(如hg19)或覆蓋整個(gè)基因(包括5'和3'非翻譯區(qū)以及啟動(dòng)子)的基因組來(lái)使用和定義基因組坐標(biāo)。當(dāng)描述編碼變異時(shí),應(yīng)該在報(bào)告中使用和提供每個(gè)基因的一個(gè)參考轉(zhuǎn)錄本。該轉(zhuǎn)錄本應(yīng)該是最長(zhǎng)的已知轉(zhuǎn)錄本或者是最具臨床相關(guān)性的轉(zhuǎn)錄本。協(xié)會(huì)支持的參考轉(zhuǎn)錄本通??梢酝ㄟ^(guò)LRG數(shù)據(jù)庫(kù)、CDS共識(shí)數(shù)據(jù)庫(kù)、人類基因突變數(shù)據(jù)庫(kù)(http://www.hgmd.)、ClinVar(http://www.ncbi.nlm./clinvar)或特異基因座數(shù)據(jù)庫(kù)來(lái)確定。然而,當(dāng)這些區(qū)域發(fā)生臨床可解釋的已知變異時(shí),實(shí)驗(yàn)室應(yīng)該評(píng)估該變異對(duì)所有臨床相關(guān)的轉(zhuǎn)錄本的影響,包括含有其他外顯子或非翻譯區(qū)延伸的可變剪切轉(zhuǎn)錄本。

Not all types of variants (e.g., complex variants) are covered by the HGVS recommendations, but possible descriptions for complex variants have been reported. In addition, this ACMG recommendation supports three specific exceptions to the HGVS nomenclature rules: (i) “X” is still considered acceptable for use in reporting nonsense variants in addition to the current HGVS recommendation of “*” and “Ter”; (ii) it is recommended that exons be numbered according to the chosen reference transcript used to designate the variant; and (iii) the term “pathogenic” is recommended instead of “affects function” because clinical interpretation is typically directly evaluating pathogenicity.

HGVS并未覆蓋所有類型的變異(如復(fù)雜變異),但是復(fù)雜變異的可能描述也已被報(bào)道。此外,ACMG支持HGVS命名規(guī)則之外的三種特殊例外:(i) 除了當(dāng)今HGVS推薦的“*”和“Ter”,“X”仍然被認(rèn)為用于報(bào)告無(wú)義變異;(ii) 建議根據(jù)指定變異選擇的參考轉(zhuǎn)錄本對(duì)外顯子進(jìn)行編號(hào);(iii) 通常因?yàn)榕R床解釋直接評(píng)估致病性,所以推薦使用術(shù)語(yǔ)“致病性”而不是“影響功能”。

3.3 文獻(xiàn)及數(shù)據(jù)庫(kù)使用

A large number of databases contain a growing number of variants that are continuously being discovered in the human genome. When classifying and reporting a variant, clinical laboratories may find valuable information in databases, as well as in the published literature. As noted above, sequence databases can also be used to identify appropriate reference sequences. Databases can be useful for gathering information but should be used with caution.

目前存在著大量與遺傳疾病相關(guān)的數(shù)據(jù)庫(kù),而這些數(shù)據(jù)庫(kù)中也包含著越來(lái)越多不斷在人類基因組中發(fā)現(xiàn)的變異。當(dāng)臨床實(shí)驗(yàn)室需要對(duì)一個(gè)變異進(jìn)行分類和出具報(bào)告時(shí),可能會(huì)在已有的數(shù)據(jù)庫(kù)(或發(fā)表的文獻(xiàn))中尋找到有價(jià)值的參考信息。在上述情況中,也可以通過(guò)使用序列數(shù)據(jù)庫(kù)獲得合適的參考序列。總體說(shuō)來(lái),數(shù)據(jù)庫(kù)的使用極大的方便了人們獲取有用信息,但在使用中需要保持謹(jǐn)慎的態(tài)度。

Population databases (Table 1) are useful in obtaining the frequencies of variants in large populations. Population databases cannot be assumed to include only healthy individuals and are known to contain pathogenic variants. These population databases do not contain extensive information regarding the functional effect of these variants or any possible associated phenotypes. When using population databases, one must determine whether healthy or disease cohorts were used and, if possible, whether more than one individual in a family was included, as well as the age range of the subjects.

人口數(shù)據(jù)庫(kù)(表1)當(dāng)需要獲得大規(guī)模人口中某變異發(fā)生的頻率時(shí),使用人口數(shù)據(jù)庫(kù)是非常適宜的。需要注意的是,人口數(shù)據(jù)庫(kù)不是僅僅指的是健康人口,也包括有致病性變異的人口。另外,在人口數(shù)據(jù)庫(kù)中,不包含這些變異造成的相關(guān)功能改變信息,或一些可能相關(guān)的表型信息。在參考使用人口數(shù)據(jù)庫(kù)時(shí),必須確保以下幾點(diǎn):①是否使用了病例-對(duì)照研究;②(如果可能)是否有的數(shù)據(jù)是一個(gè)家庭中有超過(guò)1個(gè)受試者的情況存在,以及是否有受試者的年齡信息。

Disease databases (Table 1) primarily contain variants found in patients with disease and assessment of the variants’ pathogenicity. Disease and gene-specific databases often contain variants that are incorrectly classified, including incorrect claims published in the peer-reviewed literature, because many databases do not perform a primary review of evidence. When using disease databases, it is important to consider how patients were ascertained, as described below.

疾病數(shù)據(jù)庫(kù)(表1)疾病數(shù)據(jù)庫(kù)主要由兩部分組成,一部分是在疾病患者中發(fā)現(xiàn)的變異,另一部分是通過(guò)診斷確認(rèn)的致病性變異。通常,疾病數(shù)據(jù)庫(kù)和特殊基因數(shù)據(jù)庫(kù)會(huì)包含一些錯(cuò)誤分類的變異,包括發(fā)表在同行評(píng)審文獻(xiàn)中的錯(cuò)誤論證,這是因?yàn)楹芏鄶?shù)據(jù)庫(kù)并不會(huì)對(duì)論證數(shù)據(jù)進(jìn)行初步審核。所以,在使用疾病數(shù)據(jù)庫(kù)時(shí),考慮病人到變異信息是如何被確定的非常重要,如下所述:

When using databases, clinical laboratories should (i) determine how frequently the database is updated, whether data curation is supported, and what methods were used for curation;(ii) confirm the use of HGVS nomenclature and determine the genome build and transcript references used for naming variants; (iii) determine the degree to which data are validated for analytical accuracy (e.g., low-pass nextgeneration sequencing versus Sanger-validated variants) and evaluate any quality metrics that are provided to assess data accuracy, which may require reading associated publications; and (iv) determine the source and independence of the observations listed.

當(dāng)使用數(shù)據(jù)庫(kù)時(shí),臨床實(shí)驗(yàn)室應(yīng)做到以下幾點(diǎn):(i) 確定數(shù)據(jù)庫(kù)的更新頻率,確定數(shù)據(jù)管理的運(yùn)行,以及確定使用了什么方法來(lái)進(jìn)行數(shù)據(jù)管理;(ii) 確認(rèn)使用HGVS命名,并確定將其用于基因組和轉(zhuǎn)錄本序列中的變異命名;(iii) 確定數(shù)據(jù)的分析精度(比如,變異是通過(guò)低通量(low-pass)的新一代測(cè)序技術(shù)確定,還是Sanger測(cè)序技術(shù)確定),并確定用于數(shù)據(jù)精度評(píng)估中的度量指標(biāo),要獲得這些信息可能需要閱讀相關(guān)的文獻(xiàn);(iv) 確定數(shù)據(jù)信息來(lái)源及其獨(dú)立性。

Variant assessment also includes searching the scientific and medical literature. Literature using older nomenclature and classification or based on a single observation should be used with caution. When identifying individuals and families with a variant, along with associated phenotypes, it is important to consider how patients were ascertained. This caveat is important when assessing data from publications because affected individuals and related individuals are often reported multiple times, depending on the context and size of the study. This may be due to authorship overlap, interlaboratory collaborations, or a proband and family members being followed across different clinical systems. This may mistakenly lead to duplicate counting of affected patients and a false increase in variant frequency. Overlapping authorship or institutions is the first clue to the potential for overlapping data sets.

在變異解讀中,除了使用疾病數(shù)據(jù)庫(kù)外,也可以通過(guò)檢索科學(xué)和醫(yī)學(xué)文獻(xiàn)。在使用舊的命名和分類系統(tǒng)的文獻(xiàn),以及基于單一觀察的文獻(xiàn)時(shí)要慎重。當(dāng)鑒定具有相關(guān)聯(lián)表型的個(gè)人和家系的變異時(shí),非常重要的是要考慮患者的變異是如何被確定。當(dāng)依據(jù)發(fā)表的文獻(xiàn)數(shù)據(jù)時(shí)進(jìn)行判斷時(shí),這一觀念就很重要,因?yàn)榛谘芯績(jī)?nèi)容和規(guī)模大小的差異,受累的患者和相關(guān)人員常常會(huì)被多次報(bào)道。這可能是由于作者有重疊、實(shí)驗(yàn)室間有合作、或先證者及其家庭成員同時(shí)被不同臨床系統(tǒng)隨訪,這可能會(huì)導(dǎo)致患者錯(cuò)誤被的重復(fù)計(jì)數(shù),變異頻率虛增加。作者或其研究機(jī)構(gòu)互相重疊是導(dǎo)致數(shù)據(jù)集重復(fù)的首要潛在因素。

Clinical laboratories should implement an internal system to track all sequence variants identified in each gene and clinical assertions when reported. This is important for tracking genotype–phenotype correlations and the frequency of variants in affected and normal populations. Clinical laboratories are encouraged to contribute to variant databases, such as ClinVar, including clinical assertions and evidence used for the variant classification, to aid in the continued understanding of the impact of human variation. Whenever possible, clinical information should be provided following Health Insurance Portability and Accountability Act regulations for privacy. Clinical laboratories are encouraged to form collaborations with clinicians to provide clinical information to better understand how genotype influences clinical phenotype and to resolve differences in variant interpretation between laboratories. Because of the great potential to aid clinical laboratory practice, efforts are underway for clinical variant databases to be expanded and standardized. Standardization will provide easier access to updated information as well as facilitate submission from the clinical laboratory. For example, the ClinVar database allows for the deposition of variants with clinical observations and assertions, with review status tracked to enable a more transparent view of the levels of quality of the curation.

臨床實(shí)驗(yàn)室應(yīng)建立一個(gè)內(nèi)部系統(tǒng)去跟蹤每個(gè)基因上的所有序列變異及其臨床和評(píng)估。這對(duì)于追蹤基因型-表型之間的相關(guān)性,以及該變異在患者和正常人群中的發(fā)生頻率非常重要的。我們鼓勵(lì)臨床實(shí)驗(yàn)室提交變異數(shù)據(jù)到各種數(shù)據(jù)庫(kù)庫(kù)如ClinVar,所提供的數(shù)據(jù)包括用于不同分類的臨床評(píng)估和證據(jù),以幫助人類可以不斷加深對(duì)人類遺傳變異的理解。在任何可能的時(shí)候,所提供的臨床數(shù)據(jù)應(yīng)盡可能的遵循“醫(yī)療保險(xiǎn)可移植和責(zé)任法案(HIPAA)”對(duì)個(gè)人隱私的保護(hù)。我們鼓勵(lì)臨床實(shí)驗(yàn)室與臨床醫(yī)生合作,獲得臨床信息,以便更好地理解基因型是如何影響臨床表型的,并且化解不同實(shí)驗(yàn)室對(duì)遺傳變異解讀的差異。因?yàn)榕R床變異數(shù)據(jù)庫(kù)對(duì)臨床實(shí)驗(yàn)室的實(shí)踐具有極大的潛在幫助,并且正努力進(jìn)行不斷的擴(kuò)展和標(biāo)準(zhǔn)化。標(biāo)準(zhǔn)化更加便于臨床實(shí)驗(yàn)室獲取數(shù)據(jù)庫(kù)信息,也便于他們提交最新的變異檢測(cè)信息到數(shù)據(jù)庫(kù)。例如,ClinVar數(shù)據(jù)庫(kù)可以不斷積累臨床觀察診斷的變異解讀數(shù)據(jù),且能跟蹤提交信息的審核狀態(tài),確保以更透明的方式進(jìn)行質(zhì)量管理。

3.4 生物信息學(xué)計(jì)算預(yù)測(cè)程序

A variety of in silico tools, both publicly and commercially available, can aid in the interpretation of sequence variants. The algorithms used by each tool may differ but can include determination of the effect of the sequence variant at the nucleotide and amino acid level, including determination of the effect of the variant on the primary and alternative gene transcripts, other genomic elements, as well as the potential impact of the variant on the protein. The two main categories of such tools include those that predict whether a missense change is damaging to the resultant protein function or structure and those that predict whether there is an effect on splicing (Table 2). Newer tools are beginning to address additional noncoding sequences.

各種公用和商業(yè)化計(jì)算機(jī)工具可以輔助解讀序列變異。每種工具使用的算法可能有差異,但工具都對(duì)序列變異在核苷酸及氨基酸水平上的影響進(jìn)行判斷,包括變異對(duì)初級(jí)轉(zhuǎn)錄本,可變轉(zhuǎn)錄本,其他基因組元件的影響,以及變異對(duì)蛋白質(zhì)可能的影響。這些工具主要分為兩種:一種可以預(yù)測(cè)錯(cuò)義變異是否會(huì)毀壞其所產(chǎn)生的蛋白質(zhì)的結(jié)構(gòu)或功能;另一種可以預(yù)測(cè)是否影響剪接(表2)。新的工具已可以定位額外的非編碼序列。

The impact of a missense change depends on criteria such as the evolutionary conservation of an amino acid or nucleotide, the location and context within the protein sequence, and the biochemical consequence of the amino acid substitution. The measurement of one or a combination of these criteria is used in various in silico algorithms that assess the predicted impact of a missense change. Several efforts have evaluated the performance of available prediction software to compare them with each other and to assess their ability to predict “known” disease-causing variants. In general, most algorithms for missense variant prediction are 65–80% accurate when examining known disease variants. Most tools also tend to have low specificity, resulting in overprediction of missense changes as deleterious, and are not as reliable at predicting missense variants with a milder effect.18 The in silico tools more commonly used for missense variant interpretation in clinical laboratories include PolyPhen2, SIFT, and MutationTaster. A list of in silico tools used to predict missense variants can be found in Table 2.

判斷錯(cuò)義突變的結(jié)果有些標(biāo)準(zhǔn),,如一個(gè)氨基酸或核苷酸的進(jìn)化保守性,其在蛋白質(zhì)序列中的位置和其上下游序列,以及氨基酸改變導(dǎo)致的生化結(jié)果。在各種計(jì)算機(jī)算法中所應(yīng)用的一個(gè)或幾個(gè)準(zhǔn)則進(jìn)行測(cè)定,從而對(duì)錯(cuò)義突變的影響進(jìn)行評(píng)估。已經(jīng)有一些工作通過(guò)預(yù)測(cè)軟件之間的相互比較并評(píng)估他們預(yù)測(cè)已知致病突變的能力來(lái)評(píng)估預(yù)測(cè)軟件的性能。一般情況下,多數(shù)算法預(yù)測(cè)已知致病的錯(cuò)義突變的準(zhǔn)確率能達(dá)到65-80%。但是大多數(shù)工具特異性較低,導(dǎo)致有些錯(cuò)義突變被過(guò)預(yù)測(cè)為有害突變,而且對(duì)于中性變異的預(yù)測(cè)也并不可靠。臨床實(shí)驗(yàn)室常用的錯(cuò)義變異解讀工具有PolyPhen 2、SIFT和MutationTaster。用于預(yù)測(cè)錯(cuò)義變異的生物信息分析工具見(jiàn)表2。

Multiple software programs have been developed to predict splicing as it relates to the creation or loss of splice sites at the exonic or intronic level. In general, splice site prediction tools have higher sensitivity (~90–100%) relative to specificity (~60–80%) in predicting splice site abnormalities. Some of the in silico tools commonly used for splice site variant interpretation are listed in Table 2.

現(xiàn)在已經(jīng)有許多用于預(yù)測(cè)剪接的軟件,因其與內(nèi)含子或外顯子水平上剪接位點(diǎn)的丟失或產(chǎn)生有關(guān)。一般情況下,剪接位點(diǎn)預(yù)測(cè)工具在預(yù)測(cè)剪接位點(diǎn)異常方面有較高的敏感性(~90-100%),其預(yù)測(cè)特異性只有~60-80% 。一些常用的剪接位點(diǎn)變異解讀預(yù)測(cè)的分析計(jì)算工具見(jiàn)表2。

While many of the different software programs use different algorithms for their predictions, they have similarities in their underlying basis; therefore, predictions combined from different in silico tools are considered as a single piece of evidence in sequence interpretation as opposed to independent pieces of evidence. The use of multiple software programs for sequence variant interpretation is also recommended because the different programs each have their own strengths and weaknesses, depending on the algorithm; in many cases performance can vary by the gene and protein sequence. These are only predictions, however, and their use in sequence variant interpretation should be implemented carefully. It is not recommended that these predictions be used as the sole source of evidence to make a clinical assertion.

雖然許多程序使用不同的算法進(jìn)行預(yù)測(cè),但他們的基本原理均相似;因此,在序列解讀中,組合不同軟件工具的預(yù)測(cè)結(jié)果被視為單一證據(jù)而不是相互獨(dú)立的證據(jù)。不過(guò)仍然建議使用多種軟件進(jìn)行序列變異解讀,因?yàn)槊總€(gè)軟件擁有自己獨(dú)特的優(yōu)點(diǎn)及缺點(diǎn),這取決于他們使用的算法;很多情況下,預(yù)測(cè)性能可因基因和蛋白質(zhì)序列的不同而有差異。然而,這些只是預(yù)測(cè),他們?cè)谛蛄凶儺惤庾x中的應(yīng)該慎用。我們不建議僅使用這些預(yù)測(cè)結(jié)果作為唯一證據(jù)來(lái)源去做臨床判斷。

4. 序列變異解讀的擬定標(biāo)準(zhǔn)

The following approach to evaluating evidence for a variant is intended for interpretation of variants observed in patients with suspected inherited (primarily Mendelian) disorders in a clinical diagnostic laboratory setting. It is not intended for the interpretation of somatic variation, pharmacogenomic (PGx) variants, or variants in genes associated with multigenic non- Mendelian complex disorders. Care must be taken when applying these rules to candidate genes (“genes of uncertain significance” (GUS)) in the context of exome or genome studies (see Special Considerations below) because this guidance is not intended to fulfill the needs of the research community in its effort to identify new genes in disease.

以下評(píng)估變異證據(jù)的方法是用了解釋在臨床診斷實(shí)驗(yàn)室中具有疑似遺傳(主要指孟德爾遺傳)疾病患者的變異。并不適用于解讀體細(xì)胞變異、藥物基因組(PGx)變異、或者是多基因非孟德爾復(fù)雜疾病相關(guān)的基因變異。在外顯子組或基因組研究中,對(duì)候選基因(意義不明確的基因(GUS))應(yīng)用這些準(zhǔn)則時(shí)應(yīng)當(dāng)謹(jǐn)慎(見(jiàn)下面注意事項(xiàng)),因?yàn)楸局改夏康牟皇菨M足研究社群在疾病中鑒定新致病基因的需求。

Although these approaches can be used for evaluating variants found in healthy individuals or secondary to the indication for testing, further caution must be used, as noted in several parts of the guideline, given the low prior likelihood that most variants unrelated to the indication are pathogenic. Although we expect that, in general, these guidelines will apply for variant classification regardless of whether the variant was identified through analysis of a single gene, gene panel, exome, genome, or transcriptome, it is important to consider the differences between implicating a variant as pathogenic (i.e., causative) for a disease and a variant that may be predicted to be disruptive/ damaging to the protein for which it codes, but is not necessarily implicated in a disease. These rules are intended to determine whether a variant in a gene with a definitive role in a Mendelian disorder may be pathogenic for that disorder. Pathogenicity determination should be independent of interpreting the cause of disease in a given patient. For example, a variant should not be reported as pathogenic in one case and not pathogenic in another simply because the variant is not thought to explain disease in a given case. Pathogenicity should be determined by the entire body of evidence in aggregate, including all cases studied, arriving at a single conclusion.

雖然這些方法可用于評(píng)估在健康個(gè)體中發(fā)現(xiàn)的變異或繼發(fā)于測(cè)試指征的變異,但是如在指南的幾個(gè)部分中所述,對(duì)于與指征無(wú)關(guān)的致病性變異在給予較低的先驗(yàn)可能性時(shí)需更加謹(jǐn)慎。雖然我們通常期望這些指南可以適用于變異分類,-無(wú)論其是通過(guò)分析單基因,一組基因,外顯子組,基因組或者轉(zhuǎn)錄組而鑒定的。重要的是要關(guān)注一種區(qū)別,即與疾病有關(guān)的致病變異和雖然被預(yù)測(cè)為破壞\損傷其編碼蛋白但卻與疾病無(wú)充分關(guān)聯(lián)的變異之間的區(qū)別。這些規(guī)則旨在確定在孟德爾遺傳病中有明確作用的基因的變異是否對(duì)該遺傳疾病是致病的。在某些病人中,致病性判定應(yīng)該獨(dú)立于對(duì)疾病病因的解讀。例如,某變異在一個(gè)案例中被評(píng)估為“致病的”,而在另一個(gè)案例中,由于不能解釋該疾病,就對(duì)這個(gè)位點(diǎn)不給出“致病的”的評(píng)價(jià),這樣的情況是絕對(duì)不允許的。確定致病性需要由全部證據(jù),結(jié)合所有的案例分析,最終得到一個(gè)獨(dú)立的結(jié)論。

This classification approach may be somewhat more stringent than laboratories have applied to date. They may result in a larger proportion of variants being categorized as uncertain significance. It is hoped that this approach will reduce the substantial number of variants being reported as “causative” of disease without having sufficient supporting evidence for that classification. It is important to keep in mind that when a clinical laboratory reports a variant as pathogenic, health-care providers are highly likely to take that as “actionable” and to alter the treatment or surveillance of a patient or remove such management in a genotype-negative family member, based on that determination (see How Should Health-Care Providers Use These Guidelines and Recommendations, below).

此指南的分類方法可能比目前實(shí)驗(yàn)室應(yīng)用的標(biāo)準(zhǔn)更為嚴(yán)格。這將導(dǎo)致很大一部分的變異被歸類為“意義不明確”。希望這種方法可以大量減少那些沒(méi)有足夠分類證據(jù)支持而報(bào)告為致病原因的變異。重要的是要記住,當(dāng)臨床實(shí)驗(yàn)室報(bào)告一個(gè)變異為“致病”時(shí),醫(yī)療單位很可能把其當(dāng)作“可行的”,基于這個(gè)判斷,從而會(huì)改變對(duì)患者的治療、監(jiān)測(cè),或去除基因型陰性的家庭成員的治療、監(jiān)測(cè)(參見(jiàn)下面的醫(yī)療工作者應(yīng)該如何使用這些指南和建議)。

We have provided two sets of criteria: one for classification of pathogenic or likely pathogenic variants (Table 3) and one for classification of benign or likely benign variants (Table 4). Each pathogenic criterion is weighted as very strong (PVS1), strong (PS1–4); moderate (PM1–6), or supporting (PP1–5), and each benign criterion is weighted as stand-alone (BA1), strong (BS1– 4), or supporting (BP1–6). The numbering within each category does not convey any differences of weight and is merely labeled to help refer to the different criteria. For a given variant, the user selects the criteria based on the evidence observed for the variant. The criteria then are combined according to the scoring rules in Table 5 to choose a classification from the five-tier system. The rules apply to all available data on a variant, whether gathered from the current case under investigation or from well-vetted previously published data. Unpublished case data may also be obtained through public resources (e.g., ClinVar or locus specific databases) and from a laboratory’s own database. To provide critical flexibility to variant classification, some criteria listed as one weight can be moved to another weight using professional judgment, depending on the evidence collected. For example, rule PM3 could be upgraded to strong if there were multiple observations of detection of the variant in trans (on opposite chromosomes) with other pathogenic variants (see PM3 BP2 cis/trans Testing for further guidance). By contrast, in situations when the data are not as strong as described, judgment can be used to consider the evidence as fulfilling a lower level (e.g., see PS4, Note 2 in Table 3). If a variant does not fulfill criteria using either of these sets (pathogenic or benign), or the evidence for benign and pathogenic is conflicting, the variant defaults to uncertain significance. The criteria, organized by type and strength, is shown in Figure 1. Please note that expert judgment must be applied when evaluating the full body of evidence to account for differences in the strength of variant evidence.

我們提供了兩套標(biāo)準(zhǔn):一是用于對(duì)致病或可能致病的變異進(jìn)行分類(表3),另一是用于對(duì)良性或可能良性的變異進(jìn)行分類(表4)。致病變異標(biāo)準(zhǔn)可分為非常強(qiáng)(very strong,PVS1),強(qiáng)(strong,PS1-4);中等(moderate,PM1–6),或輔助證據(jù)(supporting,PP1-5)。良性變異證據(jù)可分為獨(dú)立(stand-alone,BA1),強(qiáng)(strong,BS1–4),或輔助證據(jù)(BP1–6)。其中,數(shù)字只是作為有助于參考的分類標(biāo)注,不具有任何意義。每個(gè)類別中的數(shù)字不表示分類的任何差異,僅用來(lái)標(biāo)記以幫助指代不同的規(guī)則。對(duì)于一個(gè)給定的變異,用戶基于觀察到的證據(jù)來(lái)選擇標(biāo)準(zhǔn)。根據(jù)表5的評(píng)分規(guī)則把標(biāo)準(zhǔn)組合起來(lái)進(jìn)而從5級(jí)系統(tǒng)中選擇一個(gè)分類。這些規(guī)則適用于變異上的所有可用數(shù)據(jù),無(wú)論是基于調(diào)查現(xiàn)有案例獲得的數(shù)據(jù),還是來(lái)源于先前公布的數(shù)據(jù)。未發(fā)表的數(shù)據(jù)也可以通過(guò)公共數(shù)據(jù)庫(kù)(例如,ClinVar或位點(diǎn)特異數(shù)據(jù)庫(kù))和實(shí)驗(yàn)室自有數(shù)據(jù)庫(kù)獲得。為了對(duì)變異分類具有較好靈活性,基于收集的證據(jù)和專業(yè)判斷,可以把某些位于一種加權(quán)中的轉(zhuǎn)換到另一標(biāo)準(zhǔn)。例如,如果有多個(gè)反式變異(位于相對(duì)的染色體)檢測(cè)為致病變異,PM3可以上調(diào)到強(qiáng)(進(jìn)一步指導(dǎo)見(jiàn)PM3 BP2順/反式檢測(cè))。相反,在數(shù)據(jù)并不像描述的那么強(qiáng)的情況下,可以判斷變異為一個(gè)較低的水平(見(jiàn)表3注2 PS4)。如果一個(gè)變異不符合分類標(biāo)準(zhǔn)(致病或良性),或良性和致病的證據(jù)是相互矛盾的,則默認(rèn)該變異為“意義不確定”。程度判斷評(píng)價(jià)標(biāo)準(zhǔn)如圖1所示。請(qǐng)注意,當(dāng)評(píng)估全部的證據(jù)以解釋變異證據(jù)強(qiáng)度的差異時(shí),必須進(jìn)行專家判斷。

The following is provided to more thoroughly explain certain concepts noted in the criteria for variant classification (Tables 3 and 4) and to provide examples and/or caveats or pitfalls in their use. This section should be read in concert with Tables 3 and 4.

下面提供更徹底地解釋在變異分類標(biāo)準(zhǔn)(表3和4)中提及的某些概念,并提供實(shí)際使用中的實(shí)例和/或警告或缺陷。這部分應(yīng)該與表3及4一塊閱讀。

4.1 PVS1 無(wú)功能變異

Certain types of variants (e.g., nonsense, frameshift, canonical ±1 or 2 splice sites, initiation codon, single exon or multiexon deletion) can often be assumed to disrupt gene function by leading to a complete absence of the gene product by lack of transcription or nonsense-mediated decay of an altered transcript. One must, however, exercise caution when classifying these variants as pathogenic by considering the following principles:

某些變異類型可以導(dǎo)致無(wú)法進(jìn)行轉(zhuǎn)錄或由于無(wú)義突變導(dǎo)致轉(zhuǎn)錄終止從而導(dǎo)致基因功能破壞。例如,無(wú)義突變、移碼突變、經(jīng)典剪接位點(diǎn)±1或2點(diǎn)突變、起始密碼子變異、單個(gè)或多個(gè)外顯子缺失,這些突變因此也會(huì)被稱為無(wú)功能突變。然而,我們將這些變異分類為致病突變時(shí)必須考慮以下原則:

(i) When classifying such variants as pathogenic, one must ensure that null variants are a known mechanism of pathogenicity consistent with the established inheritance pattern for the disease. For example, there are genes for which only heterozygous missense variants cause disease and null variants are benign in a heterozygous state (e.g., many hypertrophic cardiomyopathy genes). A novel heterozygous nonsense variant in the MYH7 gene would not be considered pathogenic for dominant hypertrophic cardiomyopathy based solely on this evidence, whereas a novel heterozygous nonsense variant in the CFTR gene would likely be considered a recessive pathogenic variant.

(i) 當(dāng)將這些變異分類為致病時(shí),必須確定這些有害變異有已知明確的致病機(jī)制,并且該突變的遺傳方式與該疾病的遺傳模式一致。舉例來(lái)說(shuō),有些基因僅雜合錯(cuò)義突變即可致病,而有些疾病雜合無(wú)功能變異則是屬于良性突變(如許多肥厚性心肌病基因)。對(duì)顯性肥厚性心肌病來(lái)說(shuō),不能僅僅因?yàn)樵贛YH7基因上發(fā)現(xiàn)了一個(gè)雜合無(wú)義突變就認(rèn)定是致病的,而當(dāng)一個(gè)新的雜合無(wú)義變異出現(xiàn)在 CFTR 基因上則可以考慮它是一個(gè)隱性致病變異。

(ii) One must also be cautious when interpreting truncating variants downstream of the most 3′ truncating variant established as pathogenic in the literature. This is especially true if the predicted stop codon occurs in the last exon or in the last 50 base pairs of the penultimate exon, such that nonsense-mediated decay would not be predicted, and there is a higher likelihood of an expressed protein. The length of the predicted truncated protein would also factor into the pathogenicity assignment, however, and such variants cannot be interpreted without a functional assay.

(ii)當(dāng)文獻(xiàn)中將3’遠(yuǎn)端下游致病截短變異注釋成致病突變時(shí),要特別小心。特別是當(dāng)所預(yù)測(cè)的終止密碼子出現(xiàn)在末端外顯子,或者出現(xiàn)在倒數(shù)第二個(gè)外顯子的最后50個(gè)堿基對(duì)時(shí),這種無(wú)義突變介導(dǎo)的轉(zhuǎn)錄衰減可能不會(huì)發(fā)生,這個(gè)蛋白很可能會(huì)表達(dá)。據(jù)此所預(yù)測(cè)的截短蛋白的長(zhǎng)度也是致病性評(píng)估的因素,但這些變異未經(jīng)功能分析是無(wú)法進(jìn)行判定的。

(iii) For splice-site variants, the variant may lead to exon skipping, shortening, or inclusion of intronic material as a result of alternative donor/acceptor site usage or creation of new sites. Although splice-site variants are predicted to lead to a null effect, confirmation of impact requires functional analysis by either RNA or protein analysis. One must also consider the possibility of an in-frame deletion/insertion, which could retain the critical domains of the protein and hence lead to either a mild or neutral effect with a minor length change (PM4) or a gain-of-function effect.

(iii) 剪接位點(diǎn)變異可能導(dǎo)致外顯子丟失、縮短,也可能會(huì)導(dǎo)致外顯子部分包含內(nèi)含子序列,這是由于外顯子剪切位點(diǎn)的供體/受體位點(diǎn)改變了或產(chǎn)生了新的剪切位點(diǎn)。雖然剪切位點(diǎn)變異可能被預(yù)測(cè)為無(wú)功能變異,然而該變異類型造成的影響需要通過(guò)RNA或蛋白質(zhì)功能分析確認(rèn)。還必須考慮閱讀框內(nèi)缺失/插入的可能性,其可以保留蛋白質(zhì)的關(guān)鍵結(jié)構(gòu)域,并且因此導(dǎo)致輕微或中性效應(yīng),并且其長(zhǎng)度變化較?。≒M4)或功能獲得效應(yīng)。

(iv) Considering the presence of alternate gene transcripts and understanding which are biologically relevant, and in which tissues the products are expressed, are important. If a truncating variant is confined to only one or not all transcripts, one must be cautious about overinterpreting variant impact given the presence of the other protein isoforms.

(iv) 基因會(huì)有不同的轉(zhuǎn)錄本,哪一種轉(zhuǎn)錄本與生物學(xué)功能相關(guān),在哪些組織會(huì)表達(dá)哪些轉(zhuǎn)錄本,這些都是需要進(jìn)行重點(diǎn)考慮的。如果一個(gè)截短變異只限于一個(gè)或并非所有轉(zhuǎn)錄本,則必須謹(jǐn)慎考慮到可能存在其它同功型蛋白質(zhì),防止過(guò)度解釋。

(v) One must also be cautious in assuming that a null variant will lead to disease if found in an exon where no other pathogenic variants have been described, given the possibility that the exon may be alternatively spliced. This is particularly true if the predicted truncating variant is identified as an incidental finding (unrelated to the indication for testing), given the low prior likelihood of finding a pathogenic variant in that setting.

(v) 如果發(fā)現(xiàn)一個(gè)無(wú)功能變異位于某個(gè)外顯子上,而該外顯子先前無(wú)致病變異報(bào)道,那么該外顯子可能被選擇性剪切了,此時(shí)需要謹(jǐn)慎考慮該變異的致病性。當(dāng)預(yù)測(cè)的截短變異是偶然發(fā)現(xiàn)時(shí)(與檢測(cè)指標(biāo)無(wú)關(guān))則應(yīng)特別小心,在這種情況下該位點(diǎn)致病的可能性非常低。

4.2 PS1 突變?yōu)橥话被?br>
In most cases, when one missense variant is known to be pathogenic, a different nucleotide change that results in the same amino acid (e.g., c.34G>C (p.Val12Leu) and c.34G>T (p.Val12Leu)) can also be assumed to be pathogenic, particularly if the mechanism of pathogenicity occurs through altered protein function. However, it is important to assess the possibility that the variant may act directly through the specific DNA change (e.g., through splicing disruption as assessed by at least computational analysis) instead of through the amino acid change, in which case the assumption of pathogenicity may no longer be valid.

多數(shù)情況下,當(dāng)一個(gè)錯(cuò)義變異明確是致病的,另一個(gè)變異導(dǎo)致的突變?yōu)橄嗤被岣淖儠r(shí)(如,c.34G>C (p.Val12Leu) 和c.34G>T (p.Val12Leu) ),一般認(rèn)為該變異是致病的,特別是當(dāng)致病機(jī)制是蛋白質(zhì)功能的改變。然而,需考慮變異不是通過(guò)氨基酸水平改變,而是通過(guò)特定DNA改變來(lái)發(fā)揮作用的可能性(如剪接位點(diǎn)破壞,至少要計(jì)算機(jī)軟件分析評(píng)估),在這種情況下致病性的假設(shè)是不成立的。

4.3 PS2 PM6 新發(fā)變異

A variant observed to have arisen de novo (parental samples testing negative) is considered strong support for pathogenicity if the following conditions are met: (i) Both parental samples were shown through identity testing to be from the biological parents of the patient. Note that PM6 applies if identity is assumed but not confirmed. (ii) The patient has a family history of disease that is consistent with de novo inheritance (e.g., unaffected parents for a dominant disorder). It is possible, however, that more than one sibling may be affected because of germ-line mosaicism. (iii) The phenotype in the patient matches the gene’s disease association with reasonable specificity. For example, this argument is strong for a patient with a de novo variant in the NIPBL gene who has distinctive facial features, hirsutism, and upper-limb defects (i.e., Cornelia de Lange syndrome), whereas it would be weaker for a de novo variant found by exome sequencing in a child with nonspecific features such as developmental delay.

新發(fā)變異是指患者自身攜帶的變異,父母樣本檢測(cè)都為陰性。當(dāng)我們將一個(gè)新發(fā)變異歸類為致病時(shí),需要滿足以下條件:(i)父母樣本通過(guò)身份檢驗(yàn)表明是患者的生物學(xué)父母。注意如果身份檢驗(yàn)是假定的而沒(méi)有被證實(shí),則判定為PM6; (ii)新發(fā)變異符合當(dāng)前的家族史。例如,新發(fā)變異為顯性遺傳病且父母未患病。也可能存在生殖細(xì)胞嵌合現(xiàn)象,但此種情況一般有多個(gè)兄弟患?。?iii) 患者的表型與基因相匹配。例如,某個(gè)患者具有特殊面容、多毛和上肢缺陷(即Cornelia de Lange綜合征),檢測(cè)到NIPBL基因的新生突變即為強(qiáng)致病證據(jù),而另一個(gè)患者僅發(fā)育遲緩無(wú)明顯特征,通過(guò)外顯子組測(cè)序發(fā)現(xiàn)的新發(fā)變異,則判斷此變異致病性較低。

4.4 PS3 BS3 功能研究

Functional studies can be a powerful tool in support of pathogenicity; however, not all functional studies are effective in predicting an impact on a gene or protein function. For example, certain enzymatic assays offer well-established approaches to assess the impact of a missense variant on enzymatic function in a metabolic pathway (e.g., α-galactosidase enzyme function). On the other hand, some functional assays may be less consistent predictors of the effect of variants on protein function. To assess the validity of a functional assay, one must consider how closely the functional assay reflects the biological environment. For example, assaying enzymatic function directly from biopsied tissue from the patient or an animal model provides stronger evidence than expressing the protein in vitro. Likewise, evidence is stronger if the assay reflects the full biological function of the protein (e.g., substrate breakdown by an enzyme) compared with only one component of function (e.g., adenosine triphosphate hydrolysis for a protein with additional binding properties). Validation, reproducibility, and robustness data that assess the analytical performance of the assay and account for specimen integrity, which can be affected by the method and time of acquisition, as well as storage and transport, are important factors to consider. These factors are mitigated in the case of an assay in a Clinical Laboratory Improvement Amendments laboratory–developed test or commercially available kit. Assays that assess the impact of variants at the messenger RNA level can be highly informative when evaluating the effects of variants at splice junctions and within coding sequences and untranslated regions, as well as deeper intronic regions (e.g., messenger RNA stability, processing, or translation). Technical approaches include direct analysis of RNA and/or complementary DNA derivatives and in vitro minigene splicing assays.

功能研究是判斷致病性的有力工具,然而并非所有的功能研究都能有效預(yù)測(cè)基因或蛋白功能。舉例來(lái)說(shuō),某些酶的功能實(shí)驗(yàn)研究可以很好的評(píng)估錯(cuò)義變異對(duì)酶在代謝途徑中的功能影響(如α-半乳糖苷酶的功能)。而另一方面,某些功能實(shí)驗(yàn)在評(píng)估變異對(duì)蛋白質(zhì)功能影響時(shí)缺乏一致性。評(píng)估功能測(cè)定是否準(zhǔn)確,必須考慮功能實(shí)驗(yàn)有多大程度上反映了生物環(huán)境。例如,與離體蛋白相比,直接從患者或動(dòng)物模型的活檢組織做酶的功能實(shí)驗(yàn)提供了更有力的證據(jù)。同樣,可以反映蛋白質(zhì)的全部生物學(xué)功能(如酶分解底物功能)的證據(jù)則比僅反映一部分功能(如一種蛋白有附帶水解ATP的功能)證據(jù)性更強(qiáng)。樣本的完整性影響了功能實(shí)驗(yàn)的準(zhǔn)確性、重復(fù)性和穩(wěn)定性,所以需重點(diǎn)關(guān)注樣本的采集方法、時(shí)間、存儲(chǔ)和運(yùn)輸?shù)扔绊憳颖拘阅芎屯暾缘囊蛩亍ER床實(shí)驗(yàn)室改進(jìn)的實(shí)驗(yàn)室開發(fā)的檢測(cè)或市售的試劑盒會(huì)減少這些因素對(duì)實(shí)驗(yàn)的影響。評(píng)估變異在剪接位點(diǎn)、編碼序列、非翻譯區(qū)以及更深內(nèi)含子區(qū)域(如信使RNA穩(wěn)定性,加工或翻譯)的致病性時(shí),對(duì)變異在信使RNA水平進(jìn)行評(píng)估,可獲得更有價(jià)值的信息。相關(guān)的技術(shù)方法包括RNA和/或互補(bǔ)DNA衍生物直接分析以及體外微小基因剪接分析。

4.5 PS4 PM2 BA1 BS1 BS2 變異頻率及對(duì)照人群的使用

Assessing the frequency of a variant in a control or general population is useful in assessing its potential pathogenicity. This can be accomplished by searching publicly available population databases (e.g., 1000 Genomes Project, National Heart, Lung, and Blood Institute Exome Sequencing Project Exome Variant Server, Exome Aggregation Consortium; Table 1), as well as using race-matched control data that often are published in the literature. The Exome Sequencing Project data set is useful for Caucasian and African American populations and has coverage data to determine whether a variant is absent. Although the 1000 Genomes Project data cannot be used to assess the absence of a variant, it has a broader representation of different racial populations. The Exome Aggregation Consortium more recently released allele frequency data from >60,000 exomes from a diverse set of populations that includes approximately two-thirds of the Exome Sequencing Project data. In general, an allele frequency in a control population that is greater than expected for the disorder (Table 6) is considered strong support for a benign interpretation for a rare Mendelian disorder (BS1) or, if over 5%, it is considered as stand-alone support (BA1). Furthermore, if the disease under investigation is fully penetrant at an early age and the variant is observed in a well-documented healthy adult individual for a recessive ( homozygous), dominant (heterozygous), or X-linked ( hemizygous) condition, then this is considered strong evidence for a benign interpretation (BS2). If the variant is absent, one should confirm that the read depth in the database is sufficient for an accurate call at the variant site. If a variant is absent from (or below the expected carrier frequency if recessive) a large general population or a control cohort (>1,000 individuals) and the population is race-matched to the patient harboring the identified variant, then this observation can be considered a moderate piece of evidence for pathogenicity (PM2). Many benign variants are “private” (unique to individuals or families), however, and therefore absence in a race-matched population is not considered sufficient or even strong evidence for pathogenicity.

評(píng)估變異在對(duì)照人群或普通人群中的攜帶頻率有助于評(píng)估其潛在致病性。通過(guò)搜索公共人群數(shù)據(jù)庫(kù)(如千人數(shù)據(jù)庫(kù),ESP數(shù)據(jù)庫(kù),EAC數(shù)據(jù)庫(kù);表1),以及已發(fā)表文獻(xiàn)中相同種族的對(duì)照數(shù)據(jù)可獲得變異頻率。ESP數(shù)據(jù)庫(kù)覆蓋了白種人和非裔美國(guó)人群的變異頻率。千人數(shù)據(jù)庫(kù)盡管不能被用來(lái)評(píng)估變異致病性,但它囊括了具有更廣泛代表性的不同種族的人群。EAC數(shù)據(jù)庫(kù)近期發(fā)布了一組來(lái)源于不同人群的6萬(wàn)多個(gè)外顯子組的等位基因頻率數(shù)據(jù),包括了大約三分之二的ESP的數(shù)據(jù)。一般情況下,某一等位基因在對(duì)照人群的頻率大于疾病預(yù)期(表6)時(shí),可認(rèn)為是罕見(jiàn)孟德爾疾病良性變異的強(qiáng)證據(jù)(BS1),或者如果頻率超過(guò)5%時(shí),可認(rèn)為是良性變異的獨(dú)立證據(jù)(BA1)。此外,如果疾病發(fā)生在早期,且變異在健康成人中以隱性(純合子)、顯性(雜合子)或X-連鎖(半合子)的狀態(tài)存在,那么這就是良性變異的強(qiáng)證據(jù)(BS2)。如果某一變異在數(shù)據(jù)庫(kù)中不存在,應(yīng)該確認(rèn)數(shù)據(jù)庫(kù)測(cè)序深度是否足以檢測(cè)該變異位點(diǎn)。如果在一個(gè)大樣本的普通人群或?qū)φ杖巳簲?shù)據(jù)庫(kù)(>1000人)中變異不存在(或隱性遺傳的突變頻率是低頻),并且攜帶此變異的患者與對(duì)照人群為同一種族,那么可以認(rèn)為該變異是致病性的中等證據(jù)(PM2)。許多良性變異是“私人的”(個(gè)人或家系獨(dú)有),因此即使在相同種族的人群中缺乏也不能作為致病性的充足甚至強(qiáng)的證據(jù)。

The use of population data for case–control comparisons is most useful when the populations are well phenotyped, have large frequency differences, and the Mendelian disease under study is early onset. Patients referred to a clinical laboratory for testing are likely to include individuals sent to “rule out” a disorder, and thus they may not qualify as well-phenotyped cases. When using a general population as a control cohort, the presence of individuals with subclinical disease is always a possibility. In both of these scenarios, however, a case–control comparison will be underpowered with respect to detecting a difference; as such, showing a statistically significant difference can still be assumed to provide supportive evidence for pathogenicity, as noted above. By contrast, the absence of a statistical difference, particularly with extremely rare variants and less penetrant phenotypes, should be interpreted cautiously.

當(dāng)孟德爾遺傳病表型顯著、頻率差異大且是早期發(fā)病時(shí),使用通過(guò)“變異-對(duì)照”人群研究獲得的變異數(shù)據(jù)庫(kù)進(jìn)行變異分析是最有效的。臨床實(shí)驗(yàn)室檢測(cè)的患者可能包括 “排除”某一疾病的個(gè)體,因此他們可能不能作為表型顯著的病例;當(dāng)使用普通人群作為對(duì)照群體時(shí),具有亞臨床疾病的個(gè)體總是可能存在的。在這兩種情況下,認(rèn)為檢測(cè)出的變異致病性證據(jù)不充分。變異頻率有統(tǒng)計(jì)學(xué)顯著差異可以假定為致病性的支持證據(jù)。與此相反,對(duì)于統(tǒng)計(jì)差異不顯著,特別是極為罕見(jiàn)變異和不明顯的表型,應(yīng)謹(jǐn)慎解釋。

Odds ratios (ORs) or relative risk is a measure of association between a genotype (i.e., the variant is present in the genome) and a phenotype (i.e., affected with the disease/ outcome) and can be used for either Mendelian diseases or complex traits. In this guideline we are addressing only its use in Mendelian disease. While relative risk is different from the OR, relative risk asymptotically approaches ORs for small probabilities. An OR of 1.0 means that the variant does not affect the odds of having the disease, values above 1.0 mean there is an association between the variant and the risk of disease, and those below 1.0 mean there is a negative association between the variant and the risk of disease. In general, variants with a modest Mendelian effect size will have an OR of 3 or greater, whereas highly penetrant variants will have very high ORs; for example, APOE E4/E4 homozygotes compared with E3/E3 homozygotes have an OR of 13 (https://www.tgen. org/home/education-outreach/past-summer-interns/2012- summer-interns/erika-kollitz.aspx#.VOSi3C7G_vY). However, the confidence interval (CI) around the OR is as important as the measure of association itself. If the CI includes 1.0 (e.g., OR = 2.5, CI = 0.9–7.4), there is little confidence in the assertion of association. In the above APOE example the CI was ~10–16. Very simple OR calculators are available on the Internet (e.g., http://www./ConfidOR.htm/ and http:///statistics/odds-ratio.php/).

比值比(OR)或相對(duì)風(fēng)險(xiǎn)用于衡量基因型(即存在于基因組中的變異)和表型(即所患疾病/結(jié)果)之間的關(guān)聯(lián),適用于任何孟德爾疾病或復(fù)雜疾病。本指南只涉及其在孟德爾疾病中的使用。相對(duì)風(fēng)險(xiǎn)與OR不同,但概率較小時(shí)相對(duì)風(fēng)險(xiǎn)近似等于OR。OR值為1.0意味著該變異與疾病風(fēng)險(xiǎn)不相關(guān),大于1.0意味著變異與疾病風(fēng)險(xiǎn)正相關(guān),小于1.0意味著變異與疾病風(fēng)險(xiǎn)負(fù)相關(guān)。一般情況下,具有孟德爾中等效應(yīng)的變異,其OR值為3或者更大,高度外顯的變異具有非常高的OR值,例如,APOE基因 E4/E4純合子與E3/E3純合子相比,OR值為13 (https://www./home/education-outreach/past-summer-interns/2012-summer-interns/erika-kollitz.aspx#.VOSi3C7G_vY)。OR值的置信區(qū)間(confidence interval, CI)也是一個(gè)重要的衡量工具。如果CI中包括1.0(如OR = 2.5, CI = 0.9-7.4),則關(guān)聯(lián)的可信度很小。在上面APOE的例子中,CI為10-16。在線可獲得簡(jiǎn)單的OR值計(jì)算器(http://www./ConfidOR.htm/and http:///statistics/odds-ratio.php/)。

4.6 PM1 熱點(diǎn)突變和/或關(guān)鍵的、得到確認(rèn)的功能域

Certain protein domains are known to be critical to protein function, and all missense variants in these domains identified to date have been shown to be pathogenic. These domains must also lack benign variants. In addition, mutational hotspots in less well-characterized regions of genes are reported, in which pathogenic variants in one or several nearby residues have been observed with greater frequency. Either evidence can be considered moderate evidence of pathogenicity.

某些結(jié)構(gòu)域?qū)Φ鞍踪|(zhì)的功能起到了關(guān)鍵作用,若在這些結(jié)構(gòu)域上發(fā)現(xiàn)的所有錯(cuò)義突變均已被證實(shí)為致病突變,且這些結(jié)構(gòu)域中一定沒(méi)有已知的良性突變,那么這就能作為致病的中等證據(jù)。若突變發(fā)生在基因突變熱點(diǎn)上,且一個(gè)或多個(gè)鄰近殘基中存在已知致病突變,那么這也能作為致病的中等證據(jù)。

4.7 PM3 BP2 順式/反式檢測(cè)

Testing parental samples to determine whether the variant occurs in cis (the same copy of the gene) or in trans (different copies of the gene) can be important for assessing pathogenicity. For example, when two heterozygous variants are identified in a gene for a recessive disorder, if one variant is known to be pathogenic, then determining that the other variant is in trans can be considered moderate evidence for pathogenicity of the latter variant (PM3). In addition, this evidence could be upgraded to strong if there are multiple observations of the variant in trans with other pathogenic variants. If the variant is present among the general population, however, a statistical approach would be needed to control for random co-occurrence. By contrast, finding the second variant in cis would be supporting, though not definitive, evidence for a benign role (BP2). In the case of uncertain pathogenicity of two heterozygous variants identified in a recessive gene, then the determination of the cis versus trans nature of the variants does not necessarily provide additional information with regard to the pathogenicity of either variant. However, the likelihood that both copies of the gene are impacted is reduced if the variants are found in cis.

檢測(cè)雙親樣本以確定突變?cè)诨蛏鲜琼樖叫蛄校ㄎ挥诨虻耐豢截悾┻€是反式序列(位于基因的不同拷貝),這對(duì)評(píng)估突變的致病性非常重要。例如,當(dāng)兩個(gè)雜合突變發(fā)生在隱性遺傳病的致病基因上時(shí),如果已知其中一個(gè)突變?yōu)橹虏⊥蛔?,那么?dāng)另一個(gè)突變與其反式排列(in trans)時(shí),這可以作為后者的中等致病證據(jù)(PM1),另外,若后者與多個(gè)已知致病突變呈反式排列,則該證據(jù)可升為強(qiáng)致病證據(jù),但是,若后者在普通人群中存在,則需要用統(tǒng)計(jì)學(xué)手段判斷該現(xiàn)象是否僅為隨機(jī)共發(fā)生事件;相反,當(dāng)已知致病突變與另一突變呈順式排列(in cis)時(shí),這可以作為后者的支持良性證據(jù)(BP2)。如果兩個(gè)發(fā)生在隱性遺傳病的致病基因上的雜合突變的致病性都未知,那么判斷它們是順式排列還是反式排列并不能為判斷其中任一變異的致病性提供更多信息,但是,如果兩者是順式排列(in cis)的話,該基因兩個(gè)拷貝均受影響的可能性將會(huì)降低。

In the context of dominant disorders the detection of a variant in trans with a pathogenic variant can be considered supporting evidence for a benign impact (BP2) or, in certain well-developed disease models, may even be considered standalone evidence, as has been validated for use in assessing CFTR variants.

對(duì)于顯性遺傳病而言,若突變與致病突變反式排列(in trans),則可作為該突變的支持良性證據(jù)(BP2),對(duì)于某些研究成熟的疾病模型,甚至可以考慮將其作為獨(dú)立良性證據(jù),例如CFTR相關(guān)的突變。

4.8 PM4 BP3 由于框內(nèi)缺失/插入和終止密碼子喪失導(dǎo)致的蛋白長(zhǎng)度改變

The deletion or insertion of one or more amino acids as well as the extension of a protein by changing the stop codon to an amino acid codon (e.g., a stop loss variant) is more likely to disrupt protein function compared with a missense change alone as a result of length changes in the protein. Therefore, in-frame deletions/insertions and stop losses are considered moderate evidence of pathogenicity. The larger the deletion, insertion, or extension, and the more conserved the amino acids are in a deleted region, the more substantial is the evidence to support pathogenicity. By contrast, small in-frame deletions/insertions in repetitive regions, or regions that are not well conserved in evolution, are less likely to be pathogenic.

相較于單一的錯(cuò)義突變所導(dǎo)致的蛋白質(zhì)長(zhǎng)度變化,一個(gè)或多個(gè)氨基酸的缺失或插入、以及由終止密碼子變?yōu)榉g氨基酸的密碼子(如終止密碼子丟失)而導(dǎo)致的蛋白質(zhì)延長(zhǎng)更可能破壞蛋白質(zhì)功能。因此,框內(nèi)缺失/插入以及終止密碼子丟失可作為中等致病證據(jù)。缺失、插入或延伸范圍越大,缺失區(qū)域的氨基酸越保守,則支持致病的證據(jù)越強(qiáng)。相反,在重復(fù)區(qū)域或在進(jìn)化中不是很保守的區(qū)域中的小的框內(nèi)缺失/插入的致病的可能性較小。

4.9 PM5 同一位置新的錯(cuò)義變異

A novel missense amino acid change occurring at the same position as another pathogenic missense change (e.g., Trp38Ser and Trp38Leu) is considered moderate evidence but cannot be assumed to be pathogenic. This is especially true if the novel change is more conservative compared with the established pathogenic missense variant. Also, the different amino acid change could lead to a different phenotype. For example, different substitutions of the Lys650 residue of the FGFR3 gene are associated with a wide range of clinical phenotypes: p.Lys650Gln or p.Lys650Asn causes mild hypochondroplasia; p.Lys650Met causes severe achondroplasia with developmental delay and acanthosis nigricans; and thanatophoric dysplasia type 2, a lethal skeletal dysplasia, arises from p.Lys650Glu.

如果一個(gè)新發(fā)錯(cuò)義突變導(dǎo)致的氨基酸改變與同一位置上的已知致病突變導(dǎo)致的氨基酸改變相同(如Trp38Ser和Trp38Leu),那么可作為中等致病證據(jù)(但不能假定一定是致病的),尤其當(dāng)新的突變比已知致病錯(cuò)義突變更保守時(shí)。此外,不同的氨基酸變化可能導(dǎo)致不同的表型。例如,F(xiàn)GFR3基因編碼的Lys650殘基的不同變化與不同的臨床表型相關(guān):p.Lys650Gln或p.Lys650Asn會(huì)導(dǎo)致輕度軟骨發(fā)育不良;p.Lys650Met會(huì)導(dǎo)致嚴(yán)重的軟骨發(fā)育不全伴發(fā)育遲緩和黑棘皮??;p.Lys650Glu會(huì)導(dǎo)致2型發(fā)育異常及致命的骨骼發(fā)育不良。

4.10 PP1 BS4 共分離分析

Care must be taken when using segregation of a variant in a family as evidence for pathogenicity. In fact, segregation of a particular variant with a phenotype in a family is evidence for linkage of the locus to the disorder but not evidence of the pathogenicity of the variant itself. A statistical approach has been published with the caveat that the identified variant may be in linkage disequilibrium with the true pathogenic variant in that family. Statistical modeling takes into account age-related penetrance and phenocopy rates, with advanced methods also incorporating in silico predictions and co-occurrence with a known pathogenic variant into a single quantitative measure of pathogenicity. Distant relatives are important to include because they are less likely to have both the disease and the variant by chance than members within a nuclear family. Full gene sequencing (including entire introns and 5′ and 3′ untranslated regions) may provide greater evidence that another variant is not involved or identify additional variants to consider as possibly causative. Unless the genetic locus is evaluated carefully, one risks misclassifying a nonpathogenic variant as pathogenic.

在使用家系中變異的共分離現(xiàn)象作為致病性證據(jù)時(shí)需謹(jǐn)慎。事實(shí)上,一個(gè)與某種表型相關(guān)的特定變異在某一家系中的共分離現(xiàn)象是位點(diǎn)與疾病連鎖的證據(jù),而不是變異本身致病性的證據(jù)。一個(gè)已經(jīng)發(fā)表的統(tǒng)計(jì)方法顯示,在某個(gè)家系中鑒定的變異可能與真正的致病變異是連鎖不平衡的。統(tǒng)計(jì)模型考慮到了年齡相關(guān)的外顯率和擬表型率,同時(shí)也將生物信息分析預(yù)測(cè)以及與已知致病突變共存作為致病性的單獨(dú)定量指標(biāo)。將遠(yuǎn)親納入統(tǒng)計(jì)之中是很重要的,因?yàn)榕c核心家系成員相比,他們不太可能同時(shí)有該疾病和變異。全基因測(cè)序(包括整個(gè)內(nèi)含子和5'和3'非編碼區(qū))可在沒(méi)有另一個(gè)變異的情況下提供更多的證據(jù),或者是鑒定額外的可能致病的變異。除非仔細(xì)評(píng)估基因位點(diǎn),否則非致病變異可能被錯(cuò)誤的認(rèn)為是致病變異。

When a specific variant in the target gene segregates with a phenotype or disease in multiple affected family members and multiple families from diverse ethnic backgrounds, linkage disequilibrium and ascertainment bias are less likely to confound the evidence for pathogenicity. In this case, this criterion may be taken as moderate or strong evidence, depending on the extent of segregation, rather than supporting evidence.

當(dāng)目標(biāo)基因的特定變異在多個(gè)患病的家系成員中以及不同種族背景的多個(gè)家系中與表型或疾病共分離時(shí),則其作為致病的證據(jù)不太會(huì)受到連鎖不平衡和確認(rèn)偏倚的影響。在這種情況下,該標(biāo)準(zhǔn)可以作為中等或強(qiáng)致病證據(jù)而不是支持性證據(jù),其強(qiáng)度取決于共分離的程度。

On the other hand, lack of segregation of a variant with a phenotype provides strong evidence against pathogenicity. Careful clinical evaluation is needed to rule out mild symptoms of reportedly unaffected individuals, as well as possible phenocopies (affected individuals with disease due to a nongenetic or different genetic cause). Also, biological family relationships need to be confirmed to rule out adoption, nonpaternity, sperm and egg donation, and other nonbiological relationships. Decreased and age-dependent penetrance also must be considered to ensure that asymptomatic family members are truly unaffected.

另一方面,一個(gè)變異與表型并不共分離時(shí),為其非致病的強(qiáng)證據(jù)。需要進(jìn)行仔細(xì)的臨床評(píng)估來(lái)排除正常個(gè)體的輕度癥狀和可能的擬表型(患者表型由非遺傳或不同的遺傳原因引起)。此外,需確認(rèn)生物學(xué)家庭關(guān)系來(lái)排除收養(yǎng)、非生父、精子和卵子捐獻(xiàn)以及其他非生物學(xué)關(guān)系。同時(shí),也必須考慮外顯率下降和年齡依賴性的外顯率也必須考慮,以確保無(wú)癥狀家系成員是真正的無(wú)癥狀。

Statistical evaluation of cosegregation may be difficult in the clinical laboratory setting. If appropriate families are identified, clinical laboratories are encouraged to work with experts in statistical or population genetics to ensure proper modeling and to avoid incorrect conclusions of the relevance of the variant to the disease.

在臨床實(shí)驗(yàn)室進(jìn)行共分離的統(tǒng)計(jì)評(píng)估可能并不容易,當(dāng)鑒定了合適的家系時(shí),為了確保建模合適,并避免得出變異與疾病相關(guān)性的錯(cuò)誤結(jié)論,鼓勵(lì)臨床實(shí)驗(yàn)室與統(tǒng)計(jì)或群體遺傳學(xué)專家合作。

4.11 PP2 BP1 變異譜

Many genes have a defined spectrum of pathogenic and benign variation. For genes in which missense variation is a common cause of disease and there is very little benign variation in the gene, a novel missense variant can be considered supporting evidence for pathogenicity (PP2). By contrast, for genes in which truncating variants are the only known mechanism of variant pathogenicity, missense variants can be considered supporting evidence for a benign impact (BP1). For example, truncating variants in ASPM are the primary type of pathogenic variant in this gene, which causes autosomal recessive primary microcephaly, and the gene has a high rate of missense polymorphic variants. Therefore missense variants in ASPM can be considered to have this line of supporting evidence for a benign impact.

許多基因具有明確的致病變異和良性變異譜。在某些基因中,錯(cuò)義突變是導(dǎo)致疾病的常見(jiàn)原因,且該基因上的良性突變非常少,那么這種基因上的新發(fā)錯(cuò)義突變可作為致病變異的支持證據(jù)(PP2)。相反,有些基因致病的唯一已知變異是截短突變,該基因上的新發(fā)錯(cuò)義突變可作為良性的支持證據(jù)(BP1)。例如,ASPM基因的截短變異是該基因引起常染色體隱性遺傳小頭畸形的主要致病變異類型,且該基因發(fā)生錯(cuò)義多態(tài)性突變的頻率高,因此ASPM基因上的錯(cuò)義變異可認(rèn)為是良性影響的支持證據(jù)。

4.12 PP3 BP4 生物信息分析數(shù)據(jù)

Not overestimating computational evidence is important, particularly given that different algorithms may rely on the same (or similar) data to support predictions and most algorithms have not been validated against well-established pathogenic variants. In addition, algorithms can have vastly different predictive capabilities for different genes. If all of the in silico programs tested agree on the prediction, then this evidence can be counted as supporting. If in silico predictions disagree, however, then this evidence should not be used in classifying a variant. The variant amino acid change being present in multiple nonhuman mammalian species in an otherwise well-conserved region, suggesting the amino acid change would not compromise function, can be considered strong evidence for a benign interpretation. One must, however, be cautious about assuming a benign impact in a nonconserved region if the gene has recently evolved in humans (e.g., genes involved in immune function).

對(duì)生物信息分析證據(jù)不能過(guò)高估計(jì),特別是在已知不同的算法對(duì)于致病的預(yù)測(cè)可能依賴于相同的或類似的數(shù)據(jù)來(lái)支持預(yù)測(cè)結(jié)果,且多數(shù)算法未經(jīng)已知致病變異的驗(yàn)證。此外,針對(duì)不同的基因,相同的算法可能具有完全不同的預(yù)測(cè)能力。如果所有的生物信息分析預(yù)測(cè)結(jié)果一致,那么這可以作為支持證據(jù)。然而如果生物信息分析預(yù)測(cè)結(jié)果不一致,則此證據(jù)不應(yīng)用于變異分類。若某一變異引起的氨基酸改變?cè)诙鄠€(gè)非人哺乳動(dòng)物物種不太保守的區(qū)域中出現(xiàn),說(shuō)明該變異可能不會(huì)損害功能,可以作為良性解讀的強(qiáng)的證據(jù)。然而,如果某基因已在人類中發(fā)生進(jìn)化(如參與免疫功能的基因),我們?cè)谂卸ㄔ摶蛟诜潜J貐^(qū)域中發(fā)生的變異為良性時(shí)必須小心。

4.13 PP4 表型支持

In general, the fact that a patient has a phenotype that matches the known spectrum of clinical features for a gene is not considered evidence for pathogenicity given that nearly all patients undergoing disease-targeted tests have the phenotype in question. If the following criteria are met, however, the patient’s phenotype can be considered supporting evidence: (i) the clinical sensitivity of testing is high, with most patients testing positive for a pathogenic variant in that gene; (ii) the patient has a welldefined syndrome with little overlap with other clinical presentations (e.g., Gorlin syndrome including basal cell carcinoma, palmoplantar pits, odontogenic keratocysts); (iii) the gene is not subject to substantial benign variation, which can be determined through large general population cohorts (e.g., Exome Sequencing Project); and (iv) family history is consistent with the mode of inheritance of the disorder.

考慮到幾乎所有接受疾病針對(duì)性測(cè)試的患者都有題目中的表型,通常,不將患者表型與某個(gè)基因臨床特征譜匹配作為判斷致病的證據(jù)。但是,如果滿足以下條件,患者的表型可作為支持證據(jù):(i) 臨床檢測(cè)的靈敏度高,大多數(shù)帶有該基因致病突變的患者都檢測(cè)為陽(yáng)性;(ii) 患者癥狀明確,與其他臨床表現(xiàn)幾乎無(wú)重疊(如戈?duì)柫志C合征包括基底細(xì)胞癌、掌跖坑和牙源性角化);(iii) 該基因沒(méi)有大量的通過(guò)普通群體研究(如外顯子組測(cè)序項(xiàng)目)確定的良性變異;(iv) 家族史與疾病遺傳方式一致。

4.14 PP5 BP6 可靠的來(lái)源

There are increasing examples where pathogenicity classifications from a reputable source (e.g., a clinical laboratory with long-standing expertise in the disease area) have been shared in databases, yet the evidence that formed the basis for classification was not provided and may not be easily obtainable. In this case, the classification, if recently submitted, can be used as a single piece of supporting evidence. However, laboratories are encouraged to share the basis for classification as well as communicate with submitters to enable the underlying evidence to be evaluated and built upon. If the evidence is available, this criterion should not be used; instead, the criteria relevant to the evidence should be used.

現(xiàn)在有越來(lái)越多可靠來(lái)源(如長(zhǎng)期專注于某一疾病領(lǐng)域的臨床實(shí)驗(yàn)室)的致病性分類信息被分享在數(shù)據(jù)庫(kù)中,然而,形成分類判斷依據(jù)的證據(jù)并沒(méi)有被提供或者很難獲取。在這種情況下,近期提交的分類可以作為一個(gè)單獨(dú)的支持證據(jù)。然而,還是鼓勵(lì)實(shí)驗(yàn)室共享分類的判斷依據(jù),并與提交者進(jìn)行溝通以評(píng)估和創(chuàng)建潛在的分類證據(jù)。如果能獲得證據(jù),不應(yīng)使用該標(biāo)準(zhǔn);反之,應(yīng)該使用證據(jù)相關(guān)的標(biāo)準(zhǔn)。

4.15 BP5 可替代基因座觀察

When a variant is observed in a case with a clear alternate genetic cause of disease, this is generally considered supporting evidence to classify the variant as benign. However, there are exceptions. An individual can be a carrier of an unrelated pathogenic variant for a recessive disorder; therefore, this evidence is much stronger support for a likely benign variant classification in a gene for a dominant disorder compared with a gene for a recessive disorder. In addition, there are disorders in which having multiple variants can contribute to more severe disease. For example, two variants, one pathogenic and one novel, are identified in a patient with a severe presentation of a dominant disease. A parent also has mild disease. In this case, one must consider the possibility that the novel variant could also be pathogenic and contributing to the increased severity of disease in the proband. In this clinical scenario, observing the novel variant as the second variant would not support a benign classification of the novel variant (though it is also not considered support for a pathogenic classification without further evidence). Finally, there are certain diseases in which multigenic inheritance is known to occur, such as Bardet-Beidel syndrome, in which case the additional variant in the second locus may also be pathogenic but should be reported with caution.

一般情況下,當(dāng)某一變異是在一個(gè)具有明確的可替代遺傳病因的疾病患者中觀察到時(shí),可作為該變異良性解讀的證據(jù)。不過(guò),也有例外。某一個(gè)體可以是某一不相關(guān)隱性遺傳疾病致病變異的攜帶者,因此本證據(jù)與隱性遺傳性疾病相比,更支持顯性遺傳性疾病基因良性變異的分類。此外,有些疾病當(dāng)具有多個(gè)變異可以導(dǎo)致更嚴(yán)重的疾病。例如,在一個(gè)具有嚴(yán)重表型的顯性遺傳患者中鑒定了兩個(gè)變異,一個(gè)是致病的,一個(gè)是新的變異,父母中的一個(gè)也有輕微的疾病,這種情況下,必須考慮新的變異致病的可能性,且新的變異使先證者表型加重。在這種臨床情況下,觀察到的第二個(gè)新的變異不應(yīng)分類為良性變異,(盡管在無(wú)進(jìn)一步證據(jù)的前提下也不認(rèn)為該變異是致病的)。最后,有些疾病已知為多基因遺傳模式,如Bardet-Beidel綜合征,在第二個(gè)基因座位上的額外變異也有可能是致病的,但應(yīng)謹(jǐn)慎進(jìn)行報(bào)告。

4.16 BP7 同義變異

There is increasing recognition that splicing defects, beyond disruption of the splice consensus sequence, can be an important mechanism of pathogenicity, particularly for genes in which loss of function is a common mechanism of disease. Therefore, one should be cautious in assuming that a synonymous nucleotide change will have no effect. However, if the nucleotide position is not conserved over evolution and splicing assessment algorithms predict neither an impact to a splice consensus sequence nor the creation of a new alternate splice consensus sequence, then a splicing impact is less likely. Therefore, if supported by computational evidence (BP4), one can classify novel synonymous variants as likely benign. However, if computational evidence suggests a possible impact on splicing or there is raised suspicion for an impact (e.g., the variant occurs in trans with a known pathogenic variant in a gene for a recessive disorder), then the variant should be classified as uncertain significance until a functional evaluation can provide a more definitive assessment of impact or other evidence is provided to rule out a pathogenic role.

人們逐漸認(rèn)識(shí)到剪接缺陷,除了破壞剪接一致序列,還可能是重要的致病機(jī)制,特別是對(duì)那些功能喪失是常見(jiàn)致病機(jī)制的基因。因此,在認(rèn)為同義核苷酸改變沒(méi)有影響時(shí)應(yīng)持謹(jǐn)慎態(tài)度。然而如果核苷酸位置進(jìn)化不保守,且剪接評(píng)估算法預(yù)測(cè)其對(duì)剪接一致序列沒(méi)有影響,也不會(huì)產(chǎn)生新的剪接一致序列,那么剪接影響的可能性就比較小。因此,如果生物信息分析證據(jù)支持(BP4),可將新發(fā)同義變異分類為可能良性。然而,如果生物信息分析證據(jù)表明剪接可能有影響或懷疑有影響(例如,發(fā)生在隱性遺傳病致病基因上,且與已知致病突變呈反式排列的突變),那么該變異應(yīng)該被歸類為意義不明確,除非功能評(píng)估可以提供更確切的對(duì)影響的評(píng)估或者得到其他可排除該變異致病作用的證據(jù)。

5. 序列變異報(bào)導(dǎo)

Writing succinct yet informative clinical reports can be a challenge as the complexity of the content grows from reporting variants in single genes to multigene panels to exomes and genomes. Several guidance documents have been developed for reporting, including full sample reports of the ACMG clinical laboratory standards for next-generation sequencing guidance. Clinical reports are the final product of laboratory testing and often are integrated into a patient’s electronic health record. Therefore, effective reports are concise, yet easy to understand. Reports should be written in clear language that avoids medical genetics jargon or defines such terms when used. The report should contain all of the essential elements of the test performed, including structured results, an interpretation, references, methodology, and appropriate disclaimers. These essential elements of the report also are emphasized by Clinical Laboratory Improvement Amendments regulations and the College of American Pathologists laboratory standards for next-generation sequencing clinical tests.

編寫簡(jiǎn)明而內(nèi)容豐富的臨床報(bào)告是充滿挑戰(zhàn)性的,因?yàn)閺臋z測(cè)單個(gè)基因,到多基因小組,再到外顯子組和基因組,變異情況的報(bào)告內(nèi)容復(fù)雜程度會(huì)大大增加。為規(guī)范報(bào)告內(nèi)容已出臺(tái)了一些指南文件,包括符合ACMG臨床實(shí)驗(yàn)室標(biāo)準(zhǔn)的新一代測(cè)序檢測(cè)完整報(bào)告示例。臨床報(bào)告是實(shí)驗(yàn)室檢測(cè)結(jié)果的最終體現(xiàn),通常會(huì)放入到患者的電子健康檔案中。因此,有效的報(bào)告應(yīng)該是簡(jiǎn)明扼要且易于理解的。報(bào)告應(yīng)該使用清晰的語(yǔ)言書寫,避免使用醫(yī)學(xué)遺傳學(xué)術(shù)語(yǔ),當(dāng)必須要使用時(shí)需指明所用術(shù)語(yǔ)的定義。報(bào)告應(yīng)包含所有的檢測(cè)基本要素,包括結(jié)構(gòu)化的結(jié)果、解釋、參考文獻(xiàn)、檢測(cè)方法和適當(dāng)?shù)拿庳?zé)聲明。美國(guó)病理學(xué)家學(xué)會(huì)在針對(duì)新一代測(cè)序臨床實(shí)驗(yàn)標(biāo)準(zhǔn)的《臨床實(shí)驗(yàn)室改進(jìn)法案》(CLIA)中,也對(duì)上述基本要素予以了強(qiáng)調(diào)。

5.1 結(jié)果

The results section should list variants using HGVS nomenclature (see Nomenclature). Given the increasing number of variants found in genetic tests, presenting the variants in tabular form with essential components may best convey the information. These components include nomenclature at both the nucleotide (genomic and complementary DNA) and protein level, gene name, disease, inheritance, exon, zygosity, and variant classification. An example of a table to report structured elements of a variant is found in the Supplementary Appendix S1 online. Parental origin may also be included if known. In addition, if specific variants are analyzed in a genotyping test, the laboratory should specifically note the variants interrogated, with their full description and historical nomenclature if it exists. Furthermore, when reporting results from exome or genome sequencing, or occasionally very large disease-targeted panels, grouping variants into categories such as “Variants in Disease Genes with an Established Association with the Reported Phenotype,” “Variants in Disease Genes with a Likely Association with the Reported Phenotype,” and (where appropriate) “Incidental (Secondary) Findings” may be beneficial.

結(jié)果部分應(yīng)根據(jù)HGVS命名規(guī)則(見(jiàn)命名部分)列出變異檢測(cè)結(jié)果。考慮到在基因檢測(cè)中發(fā)現(xiàn)的變異結(jié)果數(shù)目越來(lái)越多,以包含基本內(nèi)容的表格形式呈現(xiàn)變異檢測(cè)結(jié)果可能是傳達(dá)信息的最好方法。這些基本內(nèi)容包括在核苷酸(基因組和互補(bǔ)DNA)和蛋白質(zhì)雙重水平的命名、基因名稱、涉及的疾病、遺傳方式、外顯子、合子類型及變異的分類 。用于報(bào)告變異檢測(cè)結(jié)果的結(jié)構(gòu)性要素表格見(jiàn)附錄S1。親本來(lái)源如果已知也可包括在內(nèi)。此外如果在基因分型檢測(cè)中分析某一特定變異時(shí),實(shí)驗(yàn)室應(yīng)特別注意所分析變異的完整描述及曾用名。當(dāng)報(bào)告外顯子組或全基因組測(cè)序結(jié)果,或偶爾報(bào)告涵蓋基因數(shù)目巨大的的疾病特異性panel檢測(cè)結(jié)果時(shí),將變異檢測(cè)結(jié)果進(jìn)行分類分組是有益的。推薦將變異分類成“疾病基因變異與對(duì)應(yīng)已報(bào)道的表型有確切關(guān)聯(lián)”,“疾病基因變異與對(duì)應(yīng)已報(bào)道的表型可能存在關(guān)聯(lián)”,和(在適當(dāng)情況下)“附帶(次要)發(fā)現(xiàn)”。

5.2 解讀

The interpretation should contain the evidence supporting the variant classification, including its predicted effect on the resultant protein and whether any variants identified are likely to fully or partially explain the patient’s indication for testing. The report also should include any recommendations to the clinician for supplemental clinical testing, such as enzymatic/ functional testing of the patient’s cells and variant testing of family members, to further inform variant interpretation. The interpretation section should address all variants described in the results section but may contain additional information. It should be noted whether the variant has been reported previously in the literature or in disease or control databases. The references, if any, that contributed to the classification should be cited where discussed and listed at the end of the report. The additional information described in the interpretation section may include a summarized conclusion of the results of in silico analyses and evolutionary conservation analyses. However, individual computational predictions (e.g., scores, terms such as “damaging”) should be avoided given the high likelihood of misinterpretation by health-care providers who may be unfamiliar with the limitations of predictive algorithms (see In Silico Predictive Programs, above). A discussion of decreased penetrance and variable expressivity of the disorder, if relevant, should be included in the final report. Examples of how to describe evidence for variant classification on clinical reports are found in the Supplementary Appendix S1 online.

解讀應(yīng)包含對(duì)變異檢測(cè)結(jié)果進(jìn)行分類的證據(jù),包括變異之后基因編碼蛋白的功能預(yù)測(cè),以及檢測(cè)所發(fā)現(xiàn)的變異是否可能全部或部分地解釋患者的病例跡象 。報(bào)告也應(yīng)包括一些對(duì)臨床醫(yī)生的建議,這些建議包括一些補(bǔ)充的臨床檢測(cè),如對(duì)患者細(xì)胞進(jìn)行的酶學(xué)/功能檢測(cè),以及對(duì)患者家系其他成員進(jìn)行的變異檢測(cè),以便為進(jìn)一步解讀變異檢測(cè)結(jié)果提供支持。解讀部分應(yīng)當(dāng)包括檢測(cè)結(jié)果部分描述的全部變異,以及其他附加信息。對(duì)于各個(gè)變異需要注明是否已經(jīng)在先前的文獻(xiàn)、疾病病例或?qū)φ諗?shù)據(jù)庫(kù)中有過(guò)報(bào)道。在對(duì)變異檢測(cè)結(jié)果分類時(shí)所引用的全部參考文獻(xiàn)和信息,在報(bào)告結(jié)尾處都需要列出。解讀部分其他的附加信息可以包括對(duì)變異位點(diǎn)進(jìn)行進(jìn)化保守性分析的結(jié)果總結(jié)。然而,由于醫(yī)療工作者可能不熟悉預(yù)測(cè)算法的局限性(見(jiàn)上文“3.4 生物信息學(xué)計(jì)算預(yù)測(cè)程序” ),因此應(yīng)該避免報(bào)告對(duì)個(gè)體進(jìn)行生物信息學(xué)預(yù)測(cè)的計(jì)算結(jié)果(如分?jǐn)?shù),諸如“破壞性”之類的術(shù)語(yǔ)),以免造成醫(yī)療工作者對(duì)報(bào)告產(chǎn)生誤解。如果有相關(guān)的外顯率下降和疾病表現(xiàn)多樣性分析討論,也需要包含在最終的報(bào)告中。在臨床報(bào)告中如何描述對(duì)變異檢測(cè)結(jié)果進(jìn)行分類所用證據(jù)的示例見(jiàn)附錄S1。

5.3 方法學(xué)

The methods and types of variants detected by the assay and those refractory to detection should be provided in the report. Limitations of the assay used to detect the variants also should be reported. Methods should include those used to obtain nucleic acids (e.g., polymerase chain reaction, capture, wholegenome amplification), as well as those to analyze the nucleic acids (e.g., bidirectional Sanger sequencing, next-generation sequencing, chromosomal microarray, genotyping technologies), because this may provide the health-care provider with the necessary information to decide whether additional testing is required to follow up on the results. The methodology section should also give the official gene names approved by the Human Genome Organization Gene Nomenclature Committee, RefSeq accession numbers for transcripts, and genome build, including versions. For large panels, gene-level information may be posted and referenced by URL. The laboratory may choose to add a disclaimer that addresses general pitfalls in laboratory testing, such as sample quality and sample mix-up.

報(bào)告中應(yīng)說(shuō)明使用的實(shí)驗(yàn)方法、檢測(cè)所涉及的變異類型、檢測(cè)過(guò)程的難點(diǎn),以及變異檢測(cè)方法的局限性。需要說(shuō)明的實(shí)驗(yàn)方法應(yīng)包括核酸獲取方法(如聚合酶鏈?zhǔn)椒磻?yīng)、捕獲、全基因組擴(kuò)增等)以及核酸測(cè)序方法(如雙向Sanger測(cè)序、新一代測(cè)序、染色體基因芯片、基因分型技術(shù)等),這些信息可以為醫(yī)療工作者提供必要的信息,以幫助其決定是否需要追加實(shí)驗(yàn)來(lái)跟進(jìn)這些檢測(cè)結(jié)果。方法部分還應(yīng)包括人類基因組組織(HUGO)基因命名委員會(huì)批準(zhǔn)的正式基因名稱、轉(zhuǎn)錄產(chǎn)物的RefSeq登錄號(hào)和所參考的基因組版本。對(duì)于大的Panel,基因水平的信息可以通過(guò)引用URL來(lái)加以說(shuō)明。實(shí)驗(yàn)室還可以選擇增加對(duì)檢測(cè)過(guò)程中常見(jiàn)問(wèn)題(如樣本質(zhì)量問(wèn)題、樣品混合污染等)的免責(zé)聲明。

5.4 患者維權(quán)團(tuán)體、臨床實(shí)驗(yàn)和研究的獲取

Although specific clinical guidance for a patient is not recommended for laboratory reports, provision of general information for categories of results (e.g., all positives) is appropriate and helpful. A large number of patient advocacy groups and clinical trials are now available for support and treatment of many diseases. Laboratories may choose to add this information to the body of the report or attach the information so it is sent to the health-care provider along with the report. Laboratories may make an effort to connect the health-care provider to research groups working on specific diseases when a variant’s effect is classified as “uncertain,” as long as Health Insurance Portability and Accountability Act patient privacy requirements are followed.

盡管不提倡在實(shí)驗(yàn)室報(bào)告中對(duì)患者提供具體臨床指導(dǎo),但是在報(bào)告中提供對(duì)于檢測(cè)結(jié)果分類的總體信息(如全部陽(yáng)性檢測(cè)結(jié)果)是恰當(dāng)且有益的。大量患者團(tuán)體和臨床試驗(yàn)現(xiàn)在可用于多種疾病的支持和治療。實(shí)驗(yàn)室可以選擇將此信息添加到報(bào)告的正文或附加信息,并且與報(bào)告一起發(fā)送給醫(yī)療工作者。在遵守醫(yī)療保險(xiǎn)可攜性和責(zé)任法案(HIPAA)保護(hù)患者隱私的前提下,當(dāng)某一變異檢測(cè)結(jié)果被歸為意義不明確時(shí),實(shí)驗(yàn)室可嘗試幫助醫(yī)療工作者和特定的疾病研究小組建立聯(lián)系。

5.5 變異再分析

As evidence on variants evolves, previous classifications may later require modification. For example, the availability of variant frequency data among large populations has led many uncertain significance variants to be reclassified as benign, and testing additional family members may result in the reclassification of variants.

隨著針對(duì)特定變異結(jié)果的證據(jù)信息的更新和增補(bǔ),既往的分類結(jié)果可能需要修改。例如,當(dāng)大樣本人群變異頻率數(shù)據(jù)被報(bào)道之后,許多原本意義不明確的變異信息能夠被重新歸類為良性,而對(duì)家系其他成員的補(bǔ)充檢測(cè)也可能會(huì)導(dǎo)致變異檢測(cè)結(jié)果的重新分類。

As the content of sequencing tests expands and the number of variants identified grows, expanding to thousands and millions of variants from exome and genome sequencing, the ability for laboratories to update reports as variant knowledge changes will be untenable without appropriate mechanisms and resources to sustain those updates. To set appropriate expectations with health-care providers and patients, laboratories should provide clear policies on the reanalysis of data from genetic testing and whether additional charges for reanalysis may apply. Laboratories are encouraged to explore innovative approaches to give patients and providers more efficient access to updated information.

隨著測(cè)序檢測(cè)內(nèi)容的擴(kuò)大和檢測(cè)鑒定出的變異信息數(shù)量的增加,外顯子組和基因組測(cè)序可以檢測(cè)到數(shù)以百萬(wàn)計(jì)的的變異信息。實(shí)驗(yàn)室如果沒(méi)有適當(dāng)?shù)臋C(jī)制和資源作為支撐,將無(wú)法根據(jù)新報(bào)道的變異支持信息來(lái)更新之前的報(bào)告內(nèi)容。為了給醫(yī)療工作者和患者建立適當(dāng)?shù)钠谕?,?shí)驗(yàn)室應(yīng)該提供明晰的基因檢測(cè)數(shù)據(jù)的再分析政策,并明確再分析是否需要額外費(fèi)用。實(shí)驗(yàn)室應(yīng)該被鼓勵(lì)開發(fā)新方法來(lái)幫助患者和醫(yī)療工作者更有效訪問(wèn)最新信息。

For reports containing variants of uncertain significance in genes related to the primary indication, and in the absence of updates that may be proactively provided by the laboratory, it is recommended that laboratories suggest periodic inquiry by health-care providers to determine whether knowledge of any variants of uncertain significance, including variants reported as likely pathogenic, has changed. By contrast, laboratories are encouraged to consider proactive amendment of cases when a variant reported with a near-definitive classification (pathogenic or benign) must be reclassified. Regarding physician responsibility, see the ACMG guidelines on the duty to recontact.

如果報(bào)告中有一些和患者主要病例跡象有關(guān)的變異檢測(cè)結(jié)果被分類為意義不明確,當(dāng)實(shí)驗(yàn)室無(wú)法主動(dòng)提供更新信息時(shí),實(shí)驗(yàn)室應(yīng)該建議醫(yī)療工作者定期查詢,以確定任何被分類為意義不明確及可能致病的變異其分類是否發(fā)生更改。相比之下,當(dāng)某一變異報(bào)導(dǎo)為近似確切的變異(致病性或良性)時(shí)必須重新分類,鼓勵(lì)實(shí)驗(yàn)室主動(dòng)修改。醫(yī)生的具體責(zé)任,可詳見(jiàn)ACMG指南。

5.6 變異的驗(yàn)證

Recommendations for the confirmation of reported variants is addressed elsewhere. Except as noted, confirmation studies using an orthogonal method are recommended for all sequence variants that are considered to be pathogenic or likely pathogenic for a Mendelian disorder. These methods may include, but are not limited to, re-extraction of the sample and testing, testing of parents, restriction enzyme digestion, sequencing the area of interest a second time, or using an alternate genotyping technology.

本指南在別的地方說(shuō)明了證實(shí)變異信息的推薦方法。除非另有說(shuō)明,建議對(duì)于孟德爾疾病的致病或可能致病變異分類使用正交法進(jìn)行驗(yàn)證。具體方法包括但不限于:重新取樣和檢測(cè)、檢測(cè)父母的變異情況、限制性內(nèi)切酶消化、對(duì)于目標(biāo)區(qū)域重新測(cè)序或使用另一種基因分型技術(shù)。

6. 特殊變異

6.1 基于檢測(cè)結(jié)果對(duì)GUS變異的評(píng)估和報(bào)告

Genome and exome sequencing are identifying new genotype– phenotype connections. When the laboratory finds a variant in a gene without a validated association to the patient’s phenotype, it is a GUS. This can occur when a gene has never been associated with any patient phenotype or when the gene has been associated with a different phenotype from that under consideration. Special care must be taken when applying the recommended guidelines to a GUS. In such situations, utilizing variant classification rules developed for recognized genotype– phenotype associations is not appropriate. For example, when looking across the exome or genome, a de novo observation is no longer strong evidence for pathogenicity given that all individuals are expected to have approximately one de novo variant in their exome or 100 in their genome. Likewise, thousands of variants across a genome could segregate with a significant logarithm of the odds (LOD) score. Furthermore, many deleterious variants that are clearly disruptive to a gene or its resultant protein (nonsense, frameshift, canonical ±1,2 splice site, exonlevel deletion) may be detected; however, this is insufficient evidence for a causative role in any given disease presentation.

基因組和外顯子組測(cè)序正在不斷鑒定出新的基因型-表型關(guān)聯(lián)。當(dāng)實(shí)驗(yàn)室發(fā)現(xiàn)某個(gè)基因的變異與病人的表型不具有已經(jīng)驗(yàn)證的關(guān)聯(lián)時(shí),該變異是為GUS變異。當(dāng)一個(gè)基因從未與任何病人表型相關(guān)聯(lián)時(shí),或者當(dāng)這個(gè)基因正被考慮與其它不同表型相關(guān)聯(lián)時(shí),會(huì)出現(xiàn)這種情況。當(dāng)推薦指南應(yīng)用于GUS時(shí)必須特別注意。在這種情況下,使用用于識(shí)別基因型-表型關(guān)聯(lián)的變異分類規(guī)則是不合適的。例如,縱觀外顯子組或基因組,考慮到所有個(gè)體的外顯子組中預(yù)計(jì)約有1個(gè)新發(fā)變異或基因組中約有100個(gè)新發(fā)變異,新發(fā)變異的發(fā)現(xiàn)不再是致病性的強(qiáng)有力的證據(jù)。同樣地,整個(gè)基因組中成千上萬(wàn)個(gè)變異可與顯著的LOD值共分離。此外,許多明顯破壞基因或其合成蛋白的有害變異(無(wú)義、移碼、典型±1,2剪接位點(diǎn)、外顯子水平缺失)可能被檢測(cè)出來(lái),然而,在任何給出的疾病解釋中,這些變異都是不充分的致病證據(jù)。

Variants found in a GUS may be considered as candidates and reported as “variants in a gene of uncertain significance.” These variants, if reported, should always be classified as uncertain significance. Additional evidence would be required to support the gene’s association to disease before any variant in the gene itself can be considered pathogenic for that disease. For example, additional cases with matching rare phenotypes and deleterious variants in the same gene would enable the individual variants to be classified according to the recommendations presented here.

GUS中發(fā)現(xiàn)的變異可作為候選,并報(bào)告為“意義不明確的基因變異”。如果報(bào)道這些變異,應(yīng)該一直被分類為意義不明確。在任何基因變異可被考慮為疾病的致病原因之前,都需要附加的證據(jù)支持基因與疾病的關(guān)聯(lián)。例如,與罕見(jiàn)表型匹配和在相同基因上存在有害變異的其他病例將能夠根據(jù)此處提出的建議對(duì)個(gè)體變異進(jìn)行分類。

6.2 在健康個(gè)體中評(píng)估變異或作為偶然發(fā)現(xiàn)

Caution must be exercised when using these guidelines to evaluate variants in healthy or asymptomatic individuals or to interpret incidental findings unrelated to the primary indication for testing. In these cases the likelihood of any identified variant being pathogenic may be far less than when performing disease-targeted testing. As such, the required evidence to call a variant pathogenic should be higher, and extra caution should be exercised. In addition, the predicted penetrance of pathogenic variants found in the absence of a phenotype or family history may be far less than predicted based on historical data from patients ascertained as having disease.

當(dāng)評(píng)估健康或無(wú)癥狀個(gè)體的變異或者解釋與主要檢測(cè)指征無(wú)關(guān)的偶然發(fā)現(xiàn)時(shí),必須謹(jǐn)慎使用這些指南。在這些情況下,任何識(shí)別出的變異為致病變異的可能性可能都會(huì)遠(yuǎn)遠(yuǎn)低于疾病靶向性檢測(cè)。正因?yàn)槿绱?,判定這些變異為致病變異需要更高的證據(jù),且需額外謹(jǐn)慎。此外,與基于具有確定疾病患者的歷史數(shù)據(jù)預(yù)測(cè)的外顯率相比,在無(wú)相關(guān)表型或家族史的個(gè)體中發(fā)現(xiàn)的致病變異預(yù)測(cè)的外顯率可能要低很多。

6.3 線粒體變異

The interpretation of mitochondrial variants other than well-established pathogenic variants is complex and remains challenging; several special considerations are addressed here.

除了明確的致病變異,線粒體變異的解讀是復(fù)雜且依舊充滿挑戰(zhàn)的,此處提出了一些特殊的考慮。

The nomenclature differs from standard nomenclature for nuclear genes, using gene name and m. numbering (e.g., m.8993T>C) and p. numbering, but not the standard c. numbering (see also Nomenclature). The current accepted reference sequence is the Revised Cambridge Reference Sequence of the Human Mitochondrial DNA: GenBank sequence NC_012920 gi:251831106.

線粒體變異的命名法與核基因的標(biāo)準(zhǔn)命名法不同,使用基因名和m.編號(hào)(例如,m.8993T > C)和p.編號(hào),而不是標(biāo)準(zhǔn)的c.編號(hào)(見(jiàn)命名法)。目前公認(rèn)的參考序列是人類線粒體DNA修訂版劍橋參考序列:基因庫(kù)序列NC_012920 gi:251831106。

Heteroplasmy or homoplasmy should be reported, along with an estimate of heteroplasmy of the variant if the test has been validated to determine heteroplasmy levels. Heteroplasmy percentages in different tissue types may vary from the sample tested; therefore, low heteroplasmic levels also must be interpreted in the context of the tissue tested, and they may be meaningful only in the affected tissue such as muscle. Over 275 mitochondrial DNA variants relating to disease have been recorded (http:///bin/view.pl/MITOMAP/ WebHome). MitoMap is considered the main source of information related to mitochondrial variants as well as haplotypes. Other resources, such as frequency information (http://www. mtdb.igp./), secondary structures, sequences, and alignment of mitochondrial transfer RNAs (http://mamittrna. /), mitochondrial haplogroups (http://www. /)and other information (http://www.mtdnacommunity. org/default.aspx), may prove useful in interpreting mitochondrial variants.

如果已通過(guò)檢測(cè)對(duì)異質(zhì)性水平進(jìn)行確定,應(yīng)該對(duì)異質(zhì)性或同質(zhì)性,以及變異異質(zhì)性的評(píng)估進(jìn)行報(bào)道。不同組織類型的異質(zhì)性百分比因檢測(cè)樣本的不同而有所改變,因此,低異質(zhì)性水平也必須結(jié)合檢測(cè)組織進(jìn)行解讀,且它們可能僅在受影響的組織如肌肉中才是有意義的。超過(guò)275個(gè)與疾病相關(guān)的線粒體DNA變異已被記錄(http:///bin/view.pl/MITOMAP/WebHome)。 MitoMap是線粒體變異及單倍型相關(guān)信息的主要來(lái)源。其它資源,例如頻率信息(http://www.mtdb.igp./)、二級(jí)結(jié)構(gòu)、序列和線粒體轉(zhuǎn)運(yùn)RNA的比對(duì)(http://mamittrna./)、線粒體單倍群(http://www./)和其他信息(http://www./default.aspx),可能在解讀線粒體變異時(shí)是有用的。

Given the difficulty in assessing mitochondrial variants, a separate evidence checklist has not been included. However, any evidence needs to be applied with additional caution. The genes in the mitochondrial genome encode for transfer RNA as well as for protein; therefore, evaluating amino acid changes is relevant only for genes encoding proteins. Similarly, because many mitochondrial variants are missense variants, evidence criteria for truncating variants likely will not be helpful. Because truncating variants do not fit the known variant spectrum in most mitochondrial genes, their significance may be uncertain. Although mitochondrial variants are typically maternally inherited, they can be sporadic, yet de novo variants are difficult to assess because of heteroplasmy that may be below an assay’s detection level or different between tissues. The level of heteroplasmy may contribute to the variable expression and reduced penetrance that occurs within families. Nevertheless, there remains a lack of correlation between the percentage of heteroplasmy and disease severity. Muscle, liver, or urine may be additional specimen types useful for clinical evaluation. Undetected heteroplasmy may also affect outcomes of case, case–control, and familial concordance studies. In addition, functional studies are not readily available, although evaluating muscle morphology may be helpful (i.e., the presence of ragged red fibers). Frequency data and published studies demonstrating causality may often be the only assessable criteria on the checklist. An additional tool for mitochondrial diseases may be haplogroup analysis, but this may not represent a routine method that clinical laboratories have used, and the clinical correlation is not easy to interpret.

鑒于線粒體變異評(píng)估的難度,本指南并未包括單獨(dú)的證據(jù)清單。然而,任何證據(jù)的應(yīng)用均需要格外謹(jǐn)慎。線粒體基因組中的基因編碼轉(zhuǎn)運(yùn)RNA和蛋白質(zhì),因此,評(píng)估氨基酸的變化僅與蛋白質(zhì)的編碼基因有關(guān)。同樣地,因?yàn)楹芏嗑€粒體變異是錯(cuò)義突變,截短突變的證據(jù)標(biāo)準(zhǔn)可能并不適用。由于截短突變并不符合多數(shù)線粒體基因的已知變異譜,其意義可能是不確定的。盡管線粒體變異是典型的母系遺傳,它們也可以散發(fā)的。然而由于異質(zhì)性可能低于試驗(yàn)檢測(cè)水平或組織間的差異,新發(fā)變異是難以評(píng)估的。異質(zhì)性水平可能是家族內(nèi)表達(dá)差異和外顯率降低的原因。盡管如此,異質(zhì)性百分比和疾病嚴(yán)重程度之間仍缺乏相關(guān)性。肌肉、肝臟或尿液可以作為附加樣本類型用于臨床評(píng)估。未檢測(cè)到的異質(zhì)性也可能影響病例、病例對(duì)照和家系一致性研究的結(jié)果。此外,沒(méi)有現(xiàn)成的功能研究方法,盡管評(píng)估肌肉形態(tài)可能會(huì)有所幫助(即破碎紅纖維的存在)。頻率數(shù)據(jù)和已發(fā)表的證明因果關(guān)系的研究往往是檢測(cè)報(bào)告上唯一的評(píng)估標(biāo)準(zhǔn)。單倍群分析可以作為線粒體疾病的另一個(gè)工具,但可能不是臨床實(shí)驗(yàn)室已使用的常規(guī)方法,而且臨床相關(guān)性難以解釋。

Consideration should be given to testing nuclear genes associated with mitochondrial disorders because variants in nuclear genes could be causative of oxidative disorders or modulating the mitochondrial variants.

因?yàn)楹嘶蜃儺愐部赡苁茄趸膊〉闹虏≡蚧蚱鹬{(diào)節(jié)線粒體變異的作用,因此應(yīng)考慮檢測(cè)與線粒體疾病相關(guān)的核基因。

6.4 藥物基因組學(xué)

Establishing the effects of variants in genes involved with drug metabolism is challenging, in part because a phenotype is only apparent upon exposure to a drug. Still, variants in genes related to drug efficacy and risk for adverse events have been described and are increasingly used in clinical care. Gene summaries and clinically relevant variants can be found in the Pharmacogenomics Knowledge Base (http://www.pharmgkb. org/). Alleles and nomenclature for the cytochrome P450 gene family is available at http://www.cypalleles./.Although the interpretation of PGx variants is beyond the scope of this document, we include a discussion of the challenges and distinctions associated with the interpretation and reporting of PGx results.

證實(shí)基因變異在藥物代謝中的作用是充滿挑戰(zhàn)的,部分原因在于表型只有在服藥后才明顯表現(xiàn)出來(lái)。不過(guò),與藥物療效和副作用風(fēng)險(xiǎn)相關(guān)的基因變異已被描述且越來(lái)越多地應(yīng)用于臨床治療中?;蛄斜砗团R床相關(guān)變異可以在藥物基因組學(xué)知識(shí)庫(kù)中找到(http://www./)。細(xì)胞色素P450基因家族的等位基因和命名可查詢http://www.cypalleles./。盡管PGx變異的解讀超出了本文的范圍,我們對(duì)PGx結(jié)果解讀和報(bào)告相關(guān)的挑戰(zhàn)和區(qū)別進(jìn)行了討論。

The traditional nomenclature of PGx alleles uses star (*) alleles, which often represent haplotypes, or a combination of variants on the same allele. Traditional nucleotide numbering using outdated reference sequences is still being applied. Converting traditional nomenclature to standardized nomenclature using current reference sequences is an arduous task, but it is necessary for informatics applications with next-generation sequencing.

傳統(tǒng)的PGx等位基因的命名使用星號(hào)(*)標(biāo)記等位基因,通常代表單倍型或相同等位基因變異的組合。采用舊的參考序列的傳統(tǒng)核苷酸編號(hào)仍被應(yīng)用。采用最新參考序列將傳統(tǒng)命名轉(zhuǎn)換為標(biāo)準(zhǔn)命名是一項(xiàng)艱巨的任務(wù),但這對(duì)于下一代測(cè)序的信息學(xué)應(yīng)用是必需的。

Many types of variants have been identified in PGx genes, such as truncating, missense, deletions, duplications (of functional as well as nonfunctional alleles), and gene conversions, resulting in functional, partially functional (decreased or reduced function), and nonfunctional (null) alleles. Interpreting sequence variants often requires determining haplotype from a combination of variants detected. Haplotypes are typically presumed based on population frequencies and known variant associations rather than testing directly for chromosomal phase (molecular haplotyping).

PGx基因上已經(jīng)識(shí)別了許多種變異類型,如截短、錯(cuò)義、缺失、重復(fù)(功能及非功能等位基因)以及基因轉(zhuǎn)換,導(dǎo)致功能性的、部分功能性的(減少或降低的功能)和非功能性的(無(wú)效的)等位基因。解讀序列變異常常需要從檢測(cè)到的變異的組合來(lái)確定單倍型。單倍型通常是基于人群頻率和已知變異關(guān)聯(lián)分析來(lái)假定的,而不是染色體片段(分子單倍型)的直接檢測(cè)。

In addition, for many PGx genes (particularly variants in genes coding for enzymes), the overall phenotype is derived from a diplotype, which is the combination of variants or haplotypes on both alleles. Because PGx variants do not directly cause disease, using terms related to metabolism (rapid, intermediate, poor); efficacy (resistant, responsive, sensitive); or “risk,” rather than pathogenic, may be more appropriate. Further nomenclature and interpretation guidelines are needed to establish consistency in this field.

此外,對(duì)于許多PGx基因(特別是編碼酶的基因上的變異),整體的表型取決于二倍型,即兩個(gè)等位基因上的變異或單倍型的組合。由于PGx變異并不直接引起疾病,使用代謝(快速、中等、弱)、功效(耐藥、響應(yīng)、敏感)或“風(fēng)險(xiǎn)”相關(guān)的術(shù)語(yǔ),可能比使用“致病”更合適。這一領(lǐng)域的術(shù)語(yǔ)和解讀指南需要進(jìn)一步建立一致性。

6.5 常見(jiàn)復(fù)雜疾病

Unlike Mendelian diseases, the identification of common, complex disease genes, such as those contributing to type 2 diabetes, coronary artery disease, and hypertension, has largely relied on population-based approaches (e.g., genome-wide association studies) rather than family-based studies. Currently, numerous genome-wide association study reports have resulted in the cataloguing of over 1,200 risk alleles for common, complex diseases and traits. Most of these variants are in nongenic regions, however, and additional studies are required to determine whether any of the variants are directly causal through effects on regulatory elements, for example, or are in linkage disequilibrium with causal variants.

與孟德爾疾病以家系為基礎(chǔ)的研究不同,常見(jiàn)復(fù)雜疾病(如2型糖尿病、冠心病和高血壓)相關(guān)基因的鑒定,在很大程度上依賴于以人群為基礎(chǔ)的方法(如全基因組關(guān)聯(lián)分析)。目前,大量的全基因組關(guān)聯(lián)研究報(bào)告已對(duì)1200余種常見(jiàn)復(fù)雜疾病和性狀的風(fēng)險(xiǎn)等位基因進(jìn)行了編目。這些變異大多數(shù)位于基因間區(qū),但仍需要進(jìn)一步的研究來(lái)確定這些變異是否為致病的直接原因,例如,是否通過(guò)影響調(diào)控因子而致病,又或者與致病變異處于連鎖不平衡狀態(tài)。

Common, complex risk alleles typically confer low relative risk and are meager in their predictive power. To date, the utility of common, complex risk allele testing for patient care has been unclear, and models to combine multiple markers into a cumulative risk score often are flawed and are usually no better than traditional risk factors such as family history, demographics, and nongenetic clinical phenotypes. Moreover, in almost all of the common diseases the risk alleles can explain only up to 10% of the variance in the population, even when the disease has high heritability. Given the complexity of issues, this recommendation does not address the interpretation and reporting of complex trait alleles. We recognize, however, that some of these alleles are identified during the course of sequencing Mendelian genes, and therefore guidance on how to report such alleles when found incidentally is needed. The terms “pathogenic” and “l(fā)ikely pathogenic” are not appropriate in this context, even when the association is statistically valid. Until better guidance is developed, an interim solution is to report these variants as “risk alleles” or under a separate “other reportable” category in the diagnostic report. The evidence for the risk, as identified in the case–control/ genome-wide association studies, can be expressed by modifying the terms, such as “established risk allele,” “l(fā)ikely risk allele,” or “uncertain risk allele,” if desired.

常見(jiàn)復(fù)雜風(fēng)險(xiǎn)等位基因通常被賦予較低的相對(duì)風(fēng)險(xiǎn),且預(yù)測(cè)能力薄弱。迄今為止,常見(jiàn)復(fù)雜風(fēng)險(xiǎn)等位基因檢測(cè)對(duì)于患者治療的效用尚不清楚,將多個(gè)指標(biāo)組合起來(lái)進(jìn)行累計(jì)風(fēng)險(xiǎn)評(píng)估的模型往往是有缺陷的,通常并不優(yōu)于家族史、人口統(tǒng)計(jì)資料和非遺傳性臨床表型等傳統(tǒng)風(fēng)險(xiǎn)因素。另外,在幾乎所有的常見(jiàn)疾病中,風(fēng)險(xiǎn)等位基因僅可解釋至多10%的群體變異,即使當(dāng)疾病有高度遺傳性時(shí)也是如此??紤]到問(wèn)題的復(fù)雜性,本建議并不涉及復(fù)雜性狀的等位基因的解讀和報(bào)告。然而我們認(rèn)識(shí)到,在對(duì)孟德爾基因進(jìn)行測(cè)序時(shí)可以識(shí)別這些等位基因中的一部分,因此需要有偶然發(fā)現(xiàn)這些等位基因時(shí)如何進(jìn)行報(bào)告的指南。這種情況下,術(shù)語(yǔ)“致病的”和“可能致病的”并不適用,即使關(guān)聯(lián)在統(tǒng)計(jì)學(xué)上是有效的。在建立更好的指南之前,臨時(shí)的解決辦法是將這些變異報(bào)告為“風(fēng)險(xiǎn)等位基因”,或在診斷報(bào)告中設(shè)立一個(gè)單獨(dú)的“其它報(bào)告”類別。同病例對(duì)照/全基因組關(guān)聯(lián)研究鑒定一樣,風(fēng)險(xiǎn)證據(jù)可以通過(guò)修改術(shù)語(yǔ)來(lái)表達(dá),如“確定風(fēng)險(xiǎn)等位基因”,“可能風(fēng)險(xiǎn)等位基因”或“不確定風(fēng)險(xiǎn)等位基因”。

6.6 體細(xì)胞變異

The description of somatic variants, primarily those observed in cancer cells, includes complexities not encountered with constitutional variants, because the allele ratios are highly variable and tumor heterogeneity can cause sampling differences. Interpretation helps select therapy and predicts treatment response or the prognosis of overall survival or tumor progression–free survival, further complicating variant classification. For the interpretation of negative results, understanding the limit of detection of the sequencing assay (at what allele frequency the variant can be detected by the assay) is important and requires specific knowledge of the tumor content of the sample. Variant classification categories are also different, with somatic variants compared with germ-line variants, with terms such as “responsive,” “ resistant,” “driver,” and “passenger” often used. Whether a variant is truly somatic is confirmed by sequence analysis of the patient’s germ-line DNA. A different set of interpretation guidelines is needed for somatic variants, with tumor-specific databases used for reference, in addition to databases used for constitutional findings. To address this, a workgroup has recently been formed by the AMP.

在描述主要在癌細(xì)胞中觀察到的那些體細(xì)胞變異時(shí),具有原發(fā)性變異所沒(méi)有的復(fù)雜性,因?yàn)槠涞任换虮戎凳歉叨瓤勺兊?,且腫瘤異質(zhì)性也可導(dǎo)致樣本的差異。變異的解讀有助于選擇治療方案、預(yù)測(cè)治療效果或整體的生存預(yù)后或腫瘤的無(wú)進(jìn)展生存期預(yù)后,使得變異的分類更加復(fù)雜化。對(duì)于陰性結(jié)果的解讀,了解測(cè)序分析的檢測(cè)局限性(變異可在何種等位基因頻率時(shí)被檢測(cè)到)至關(guān)重要,且需要了解樣本中腫瘤含量的特定信息。與胚系變異相比,體細(xì)胞變異的分類類別也不同,經(jīng)常使用“敏感”、“拮抗”、“驅(qū)動(dòng)”和“伴隨”等術(shù)語(yǔ)。一個(gè)變異是否是體細(xì)胞變異需要通過(guò)患者胚系DNA的序列分析來(lái)證實(shí)。除了用于原發(fā)性突變的數(shù)據(jù)庫(kù)以外,體細(xì)胞變異還需要一組不同的解讀指南,以腫瘤特異性數(shù)據(jù)庫(kù)作為參考。為了解決這個(gè)問(wèn)題,AMP最近已經(jīng)成立了一個(gè)工作組。

7. 醫(yī)療工作者如何使用這些指南和建議

The primary purpose of clinical laboratory testing is to support medical decision making. In the clinic, genetic testing is generally used to identify or confirm the cause of disease and to help the health-care provider make individualized treatment decisions including the choice of medication. Given the complexity of genetic testing, results are best realized when the referring health-care provider and the clinical laboratory work collaboratively in the testing process.

臨床實(shí)驗(yàn)室檢測(cè)的主要目的是為醫(yī)療決策提供依據(jù)。在臨床上,基因檢測(cè)一般用于識(shí)別或確認(rèn)疾病的原因,并幫助醫(yī)療工作者做出個(gè)性化的治療決策,包括用藥的選擇。鑒于基因檢測(cè)的復(fù)雜性,檢測(cè)過(guò)程中需相關(guān)醫(yī)療工作者和臨床實(shí)驗(yàn)室協(xié)作才能得到最佳結(jié)果。

When a health-care provider orders genetic testing, the patient’s clinical information is integral to the laboratory’s analysis. As health-care providers increasingly utilize genomic (exome or genome) sequencing, the need for detailed clinical information to aid in interpretation assumes increasing importance. For example, when a laboratory finds a rare or novel variant in a genomic sequencing sample, the director cannot assume it is relevant to a patient just because it is rare, novel, or de novo. The laboratory must evaluate the variant and the gene in the context of the patient’s and family’s history, physical examinations, and previous laboratory tests to distinguish between variants that cause the patient’s disorder and those that are incidental (secondary) findings or benign. Indeed, accurate and complete clinical information is so essential for the interpretation of genome-level DNA sequence findings that the laboratory can reasonably refuse to proceed with the testing if such information is not provided with the test sample.

當(dāng)醫(yī)療工作者提出基因檢測(cè)需求時(shí),患者的臨床信息對(duì)實(shí)驗(yàn)室分析是不可或缺的。由于醫(yī)療工作者越來(lái)越多地利用基因組(外顯子組或基因組)測(cè)序,對(duì)有助于解讀的詳細(xì)的臨床信息的需要與日俱增。例如,當(dāng)一個(gè)實(shí)驗(yàn)室在基因組測(cè)序樣品中發(fā)現(xiàn)一個(gè)罕見(jiàn)或新發(fā)的變異時(shí),實(shí)驗(yàn)室負(fù)責(zé)人不能僅因?yàn)樵撟儺愂呛币?jiàn)的、新奇的或者新發(fā)的來(lái)假定它與患者有關(guān)。該實(shí)驗(yàn)室必須通過(guò)患者的背景、家族史、體格檢查和前期實(shí)驗(yàn)室檢查對(duì)變異和基因進(jìn)行評(píng)估,進(jìn)而區(qū)分致病變異和其他偶然(次要)發(fā)現(xiàn)或良性變異。事實(shí)上,準(zhǔn)確和完整的臨床信息對(duì)于基因組水平DNA序列檢測(cè)結(jié)果的解讀是不可或缺的,對(duì)不提供測(cè)試樣品此類信息的,實(shí)驗(yàn)室可以合理拒絕繼續(xù)進(jìn)行檢測(cè)。

For tests that cover a broad range of phenotypes (large panels, exome and genome sequencing) the laboratory may find candidate causative variants. Further follow-up with the health-care provider and patient may uncover additional evidence to support a variant. These additional phenotypes may be subclinical, requiring additional clinical evaluation to detect (e.g., temporal bone abnormalities detected by computed tomography in a hearing-impaired patient with an uncertain variant in SLC26A4, the gene associated with Pendred syndrome). In addition, testing other family members to establish when a variant is de novo, when a variant cosegregates with disease in the family, and when a variant is in trans with a pathogenic variant in the same recessive disease-causing gene is valuable. Filtering out or discounting the vast majority of variants for dominant diseases when they can be observed in healthy relatives is possible, making the interpretation much more efficient and conclusive. To this end, it is strongly recommended that every effort be made to include parental samples along with that of the proband, so-called “trio” testing (mother, father, affected child), in the setting of exome and genome sequencing, particularly for suspected recessive or de novo causes. Obviously this will be easier to achieve for pediatric patients than for affected adults. In the absence of one or both parents, the inclusion of affected and unaffected siblings can be of value.

對(duì)于覆蓋了廣泛表型的檢測(cè)(大的panels、外顯子組和基因組測(cè)序),實(shí)驗(yàn)室可能會(huì)發(fā)現(xiàn)候選致病變異。對(duì)醫(yī)療工作者和患者后續(xù)的隨訪可能會(huì)發(fā)現(xiàn)更多的證據(jù)來(lái)支持某一變異。這些額外的表型可能是亞臨床癥狀,需要附加的臨床評(píng)估來(lái)檢測(cè)(例如,一個(gè)在SLC26A4基因(與Pendred綜合征相關(guān)的基因)上有不確定變異的聽力受損患者,CT檢查提示顳骨異常)。此外,當(dāng)一個(gè)變異是新發(fā)變異,或者當(dāng)一個(gè)變異在家系中與表型共分離,或者在相同隱性致病基因中,一個(gè)變異與一個(gè)致病變異處于反式位置時(shí),有必要在其他家系成員中進(jìn)行驗(yàn)證。當(dāng)顯性疾病可在健康親屬中觀察到時(shí),對(duì)其絕大部分變異過(guò)濾或刪減是可行的,使得解讀更加有效和準(zhǔn)確。為此,我們強(qiáng)烈建議在開展外顯子組或基因組測(cè)序時(shí),盡力做到“核心家系”檢測(cè)(即母親、父親、患病兒童),尤其是對(duì)懷疑有隱性遺傳或新發(fā)變異的患者。與成人患者相比,這顯然在兒科患者中更易實(shí)現(xiàn)。在沒(méi)有父母一方或雙方時(shí),納入患病和正常的兄弟姐妹也是有意義的。

Many genetic variants can result in a range of phenotypic expression (variable expressivity), and the chance of disease developing may not be 100% (reduced penetrance), further underscoring the importance of providing comprehensive clinical data to the clinical laboratory to aid in variant interpretation. Ideally, it is recommended that clinical data be deposited into, and shared via, centralized repositories as allowable by Health Insurance Portability and Accountability Act and institutional review board regulations. Importantly, referring health-care providers can further assist clinical laboratories by recruiting DNA from family members in scenarios where their participation will be required to interpret results, (e.g., when evaluating cosegregation with disease using affected family members, genotyping parents to assess for de novo occurrence and determining the phase of variants in recessive disorders using first-degree relatives).

許多遺傳變異會(huì)導(dǎo)致一系列表型 (表達(dá)多樣性),疾病發(fā)生的機(jī)率也可能不是100% (外顯率降低),這些均進(jìn)一步強(qiáng)調(diào)了向臨床實(shí)驗(yàn)室提供全面的臨床數(shù)據(jù)來(lái)幫助解讀變異的重要性。在理想的情況下,建議臨床數(shù)據(jù)應(yīng)依據(jù)醫(yī)療保險(xiǎn)可攜性和責(zé)任法案(HIPAA)和機(jī)構(gòu)審查委員會(huì)條例的許可存入并通過(guò)集中存儲(chǔ)庫(kù)共享。重要的是,當(dāng)家庭成員的參與對(duì)于解讀結(jié)果是必需的時(shí)候,相關(guān)醫(yī)療工作者可以進(jìn)一步幫助臨床實(shí)驗(yàn)室收集家庭成員的DNA(例如,當(dāng)評(píng)估家系患者與疾病共分離時(shí),父母的基因型分析可用來(lái)評(píng)估新發(fā)變異的發(fā)生,一級(jí)親屬可用來(lái)確定隱性遺傳疾病的變異階段)。

A key issue for health-care providers is how to use the evidence provided by genetic testing in medical management decisions. Variant analysis is, at present, imperfect, and the variant category reported does not imply 100% certainty. In general, a variant classified as pathogenic using the proposed classification scheme has met criteria informed by empirical data such that a health-care provider can use the molecular testing information in clinical decision making. Efforts should be made to avoid using this as the sole evidence of Mendelian disease; it should be used in conjunction with other clinical information when possible. Typically, a variant classified as likely pathogenic has sufficient evidence that a health-care provider can use the molecular testing information in clinical decision making when combined with other evidence of the disease in question. For example, in the prenatal setting an ultrasound may show a key confirmatory finding; in postnatal cases, other data such as enzyme assays, physical findings, or imaging studies may conclusively support decision making. However, it is recommended that all possible follow-up testing, as described above, be pursued to generate additional evidence related to a likely pathogenic variant because this may permit the variant to be reclassified as pathogenic. A variant of uncertain significance should not be used in clinical decision making. Efforts to resolve the classification of the variant as pathogenic or benign should be undertaken. While this effort to reclassify the variant is underway, additional monitoring of the patient for the disorder in question may be prudent. A variant considered likely benign has sufficient evidence that a health-care provider can conclude that it is not the cause of the patient’s disorder when combined with other information, for example, if the variant does not segregate in an affected family member and complex inheritance patterns are unlikely. A variant considered benign has sufficient evidence that a health-care provider can conclude that it is not the cause of the patient’s disorder.

醫(yī)療工作者的一個(gè)關(guān)鍵問(wèn)題是如何使用基因檢測(cè)提供的證據(jù)進(jìn)行醫(yī)療管理決策。目前變異分析是不完善的,報(bào)道的變異分類也并不是100%確定的。一般來(lái)說(shuō),根據(jù)推薦的分類方法劃分為致病性的變異符合經(jīng)驗(yàn)數(shù)據(jù)形成的標(biāo)準(zhǔn),所以醫(yī)療工作者可以在臨床決策時(shí)采用分子檢測(cè)信息。應(yīng)盡力避免使用此類信息作為孟德爾疾病的唯一證據(jù),在可能的情況下應(yīng)與其他臨床資料相結(jié)合。通常情況下,一個(gè)有足夠的證據(jù)被劃分為可能致病的變異,當(dāng)與可疑疾病的其它證據(jù)相結(jié)合時(shí),醫(yī)療工作者可以使用分子檢測(cè)信息進(jìn)行臨床決策的制定。例如,產(chǎn)前超聲可能顯示關(guān)鍵的證實(shí)結(jié)果,對(duì)于產(chǎn)后的病例,其他數(shù)據(jù)如酶檢測(cè)、體格檢查,或影像學(xué)研究可能最終支持臨床決策。然而,推薦進(jìn)行所有如上所述的可能的后續(xù)檢測(cè),追蹤可能致病變異相關(guān)的附加證據(jù)的產(chǎn)生,因?yàn)檫@有可能將可能致病變異重新歸類為致病變異。意義不明確的變異不宜應(yīng)用于臨床決策。應(yīng)努力將變異分類為致病性或良性。雖然變異的重新分類正在進(jìn)行,對(duì)可疑致病的患者進(jìn)行額外的監(jiān)測(cè)應(yīng)審慎。一個(gè)有足夠證據(jù)被考慮為可能良性的變異,醫(yī)療工作者可以結(jié)合其它信息,推斷此變異不是該患者致病的原因,例如,變異在患病的家族成員中不分離且可排除復(fù)雜遺傳模式。一個(gè)有足夠證據(jù)被考慮為良性的變異,醫(yī)療工作者可以得出此變異不是該患者致病原因的結(jié)論。

How the genetic testing evidence is used is also dependent on the clinical context and indication for testing. In a prenatal diagnostic case where a family is considering irrevocable decisions such as fetal treatment or pregnancy termination, the weight of evidence from the report and other sources such as fetal ultrasound needs to be considered before action is taken. When a genetic test result is the only evidence in a prenatal setting, variants considered likely pathogenic must be explained carefully to families. It is therefore critical for referring healthcare providers to communicate with the clinical laboratory to gain an understanding of how variants are classified to assist in patient counseling and management.

基因檢測(cè)的證據(jù)如何使用也依賴于臨床背景和檢測(cè)指示。在產(chǎn)前診斷的病例中,如果該家庭正在考慮不可逆的宮內(nèi)治療或終止妊娠等決定時(shí),需要在采取行動(dòng)之前慎重考慮報(bào)告中證據(jù)的份量和胎兒超聲等其它信息。當(dāng)基因檢測(cè)結(jié)果是產(chǎn)前檢查的唯一證據(jù)時(shí),必須向相關(guān)家庭認(rèn)真解釋可能致病的變異。所以相關(guān)醫(yī)療工作者應(yīng)與臨床實(shí)驗(yàn)室溝通,以了解變異是如何分類的,進(jìn)而協(xié)助病人咨詢和健康管理,這是至關(guān)重要的。

8 參考文獻(xiàn)(略)

圖1



表1 人群數(shù)據(jù)庫(kù),疾病特異性數(shù)據(jù)庫(kù)和序列數(shù)據(jù)庫(kù)


人群數(shù)據(jù)庫(kù)

Exome Aggregation Consortium http://exac./ 本數(shù)據(jù)庫(kù)中的變異信息是通過(guò)對(duì)61486個(gè)獨(dú)立個(gè)體進(jìn)行全外顯子測(cè)序獲得。同時(shí)也是多種特殊疾病和群體遺傳學(xué)研究中的一部分。庫(kù)中不包括兒科疾病患者及其相關(guān)人群。

Exome Variant Server http://evs.gs./EVS本數(shù)據(jù)庫(kù)中的變異信息是通過(guò)對(duì)幾個(gè)歐洲和非洲裔大規(guī)模人群的全外顯子測(cè)序獲得。當(dāng)缺乏變異信息時(shí),庫(kù)中以覆蓋數(shù)據(jù)替代默認(rèn)該數(shù)據(jù)已覆蓋。

1000 Genomes Project http://browser.本數(shù)據(jù)庫(kù)中的變異信息是通過(guò)對(duì)26個(gè)種群進(jìn)行低覆蓋度的全基因組測(cè)序和高覆蓋度的靶序列測(cè)序獲得。本庫(kù)所提供的信息比Exome Variant Server更具多樣性,但也包含有低質(zhì)量的數(shù)據(jù),有些群體中還包含有關(guān)聯(lián)性個(gè)體在內(nèi)。

dbSNP http://www.ncbi.nlm./snp本數(shù)據(jù)庫(kù)由多種來(lái)源獲得的短片段遺傳變異(通?!?0bp)信息組成。庫(kù)中可能缺乏溯源性研究的細(xì)節(jié),也可能包含致病性突變?cè)趦?nèi)。

dbVar http://www.ncbi.nlm./dbvar本數(shù)據(jù)庫(kù)由多種來(lái)源獲得的基因結(jié)構(gòu)變異(通常>50bp)信息組成。

疾病數(shù)據(jù)庫(kù)

ClinVar http://www.ncbi.nlm./clinvar對(duì)變異與表型和臨床表型之間的關(guān)聯(lián)進(jìn)行確定的數(shù)據(jù)庫(kù)。

OMIM http://www.本數(shù)據(jù)庫(kù)所含人類基因和相關(guān)遺傳背景,同時(shí)具有疾病相關(guān)基因遺傳變異的代表性樣本收錄與與遺傳疾病典型相關(guān)的樣本變異信息。

Human Gene Mutation Database http://www.本數(shù)據(jù)庫(kù)中的變異注釋有文獻(xiàn)發(fā)表。庫(kù)中大部分內(nèi)容需付費(fèi)訂閱。

其他特殊數(shù)據(jù)庫(kù)

Human Genome Variation Society http://www./dblist/dblist.html本數(shù)據(jù)庫(kù)由人類基因組變異協(xié)會(huì)(HGVS)開發(fā),提供數(shù)千種專門針對(duì)人群中的特殊變異進(jìn)行的注釋。數(shù)據(jù)庫(kù)很大一部分是基于Leiden Open Variation Database system建立。

Leiden Open Variation Database http://www.

DECIPHER http://decipher.使用Ensemble基因組瀏覽器,將基因芯片數(shù)據(jù)和臨床表型進(jìn)行關(guān)聯(lián),便于臨床醫(yī)生和研究人員使用的細(xì)胞分子遺傳學(xué)數(shù)據(jù)庫(kù)。

序列數(shù)據(jù)庫(kù)

NCBI Genome http://www.ncbi.nlm./genome 人類全基因組參考序列的來(lái)源

RefSeqGene http://www.ncbi.nlm./refseq/rsg醫(yī)學(xué)相關(guān)基因參考序列

Locus Reference Genomic (LRG) http://www.

MitoMap http://www./MITOMAP/HumanMitoSeq對(duì)“劍橋版-人類線粒體DNA參考序列”進(jìn)行修訂后形成

表2 生物信息分析工具


分類名稱網(wǎng)站依據(jù)

錯(cuò)義預(yù)測(cè)Consurf http://consurftest. 進(jìn)化保守性

FATHMMhttp://fathmm.進(jìn)化保守性

MutationAsses http:// 進(jìn)化保守性

PANTHER http://www./tools/csnpScoreForm.jsp進(jìn)化保守性

PhD-SNPhttp://snps./phd-snp/phd-snp.html 進(jìn)化保守性

SIFThttp://sift.進(jìn)化保守性

SNP&GOhttp://snps-and-go.biocomp./snps-and-go蛋白結(jié)構(gòu)/功能

Align GVGDhttp://agvgd./agvgd_input.php蛋白結(jié)構(gòu)/功能和進(jìn)化保守性

MAPPhttp://mendel./SidowLab/downloads/MAPP/index.html蛋白結(jié)構(gòu)/功能和進(jìn)化保守性

MutationTasterhttp://www.蛋白結(jié)構(gòu)/功能和進(jìn)化保守性

MutPredhttp://mutpred.蛋白結(jié)構(gòu)/功能和進(jìn)化保守性

PolyPhen-2http://genetics.bwh./pph2蛋白結(jié)構(gòu)/功能和進(jìn)化保守性

PROVEANhttp://provean./index.php變異序列和蛋白序列同源性之間的相似性比對(duì)和測(cè)量

nsSNPAnalyzerhttp://snpanalyzer.多序列比對(duì)和蛋白結(jié)構(gòu)分析

Condelhttp://bg./fannsdb/綜合SIFT、PolyPhen-2和MutationAssessor進(jìn)行綜合預(yù)測(cè)

CADDhttp://cadd.gs.對(duì)于來(lái)自模擬變異的等位基因進(jìn)行不同的注釋

剪切位點(diǎn)預(yù)測(cè)GeneSplicerhttp://www.cbcb./software/GeneSplicer/gene_spl.shtml 馬爾可夫模型

Human Splicing Finderhttp://www./HSF/位置依賴的邏輯

MaxEntScanhttp://genes./burgelab/maxent/Xmaxentscan_scoreseq.html最大熵原則

NetGene2http://www.cbs./services/NetGene2神經(jīng)網(wǎng)絡(luò)

NNSplicehttp://www./seq_tools/splice.html神經(jīng)網(wǎng)絡(luò)

FSPLICEhttp://www./berry.phtml?topic=fsplice&group=programs&subgroup=gfind基于權(quán)重矩陣模型進(jìn)行種特異性預(yù)測(cè)

核酸保守性預(yù)測(cè)GERPhttp://mendel./sidowlab/downloads/gerp/index.html基因組進(jìn)化速率分析

PhastConshttp://compgen.bscb./phast/保守打分及鑒定保守元件

PhyloPhttp://compgen.bscb./phast/

http://compgen.bscb./phast/help-pages/phyloP.txt比對(duì)和分子進(jìn)化樹:在家系特異或者所有分支中,計(jì)算保守或者加速的P值

表3 致病變異分級(jí)標(biāo)準(zhǔn)


致病性證據(jù) 分類

非常強(qiáng) PVS1:當(dāng)一個(gè)疾病的致病機(jī)制為功能喪失(LOF)時(shí),無(wú)功能變異(無(wú)義突變、移碼突變、經(jīng)典±1或2的剪接突變、起始密碼子變異、單個(gè)或多個(gè)外顯子缺失)注意事項(xiàng):1. 該基因的LOF是否是導(dǎo)致該疾病的明確致病機(jī)制(如GFAP、MYH7)2. 3'端末端的功能缺失變異需謹(jǐn)慎解讀3.需注意外顯子選擇性缺失是否影響到蛋白質(zhì)的完整性4.考慮一個(gè)基因存在多種轉(zhuǎn)錄本的情況

強(qiáng) PS1:與先前已確定為致病性的變異有相同的氨基酸改變。例如:同一密碼子,G>C或G> T改變均可導(dǎo)致纈氨酸→亮氨酸的改變。注意剪切影響的改變。

PS2:患者的新發(fā)變異,且無(wú)家族史。(經(jīng)雙親驗(yàn)證) 注:僅僅確認(rèn)父母還是不足夠的,還需注意捐卵、代孕、胚胎移植的差錯(cuò)等情況。

PS3:體內(nèi)、體外功能實(shí)驗(yàn)已明確會(huì)導(dǎo)致基因功能受損的變異。 注:功能實(shí)驗(yàn)需要驗(yàn)證是有效的,且具有重復(fù)性與穩(wěn)定性。

PS4:變異出現(xiàn)在患病群體中的頻率顯著高于對(duì)照群體。注1:可選擇使用相對(duì)風(fēng)險(xiǎn)值或者OR值來(lái)評(píng)估,建議位點(diǎn)OR大于5.0且置信區(qū)間不包括1.0的可列入此項(xiàng)。(詳細(xì)見(jiàn)指南正文)。注2:極罕見(jiàn)的變異在病例對(duì)照研究可能無(wú)統(tǒng)計(jì)學(xué)意義,在多個(gè)具有相同表型的患者中優(yōu)先觀察到該變異且在對(duì)照中未觀察到可作為中等水平證據(jù)。

中等 PM1:位于熱點(diǎn)突變區(qū)域,和/或位于已知無(wú)良性變異的關(guān)鍵功能域(如酶的活性位點(diǎn))。

PM2:ESP數(shù)據(jù)庫(kù)、千人數(shù)據(jù)庫(kù)、EAC數(shù)據(jù)庫(kù)中正常對(duì)照人群中未發(fā)現(xiàn)的變異(或隱性遺傳病中極低頻位點(diǎn))(表6) 注意事項(xiàng): 高通量測(cè)序得到的插入/缺失人群數(shù)據(jù)質(zhì)量較差

PM3:在隱性遺傳病中,在反式位置上檢測(cè)到致病變異。 注意:這種情況必須通過(guò)患者父母或后代驗(yàn)證。

PM4:非重復(fù)區(qū)框內(nèi)插入/缺失或終止密碼子喪失導(dǎo)致的蛋白質(zhì)長(zhǎng)度變化。

PM5:新的錯(cuò)義突變到氨基酸變化,此變異之前未曾報(bào)道,但是在同一位點(diǎn),導(dǎo)致另外一種氨基酸的變異已經(jīng)確認(rèn)是致病性的,如:現(xiàn)在觀察到的是Arg156Cys,而Arg156His是已知致病的。注意剪切影響的改變。

PM6: 無(wú)父母樣本驗(yàn)證的新發(fā)變異。

支持證據(jù) PP1:突變與疾病成家系共分離(在家系多個(gè)患者中檢測(cè)到此變異) 注:如果有更多的證據(jù),可作為更強(qiáng)的證據(jù)。

PP2: 對(duì)某個(gè)基因來(lái)說(shuō),如果這個(gè)基因的錯(cuò)義變異是造成某種疾病的原因,并且這個(gè)基因中良性變異所占的比例很小,在這樣的基因中所發(fā)現(xiàn)的新的錯(cuò)義變異。

PP3:多種統(tǒng)計(jì)方法預(yù)測(cè)出該變異會(huì)對(duì)基因或基因產(chǎn)物造成有害的影響,包括保守性預(yù)測(cè)、進(jìn)化預(yù)測(cè)、剪接位點(diǎn)影響等。注意事項(xiàng):由于做預(yù)測(cè)時(shí)許多生物信息算法使用相同或非常相似的輸入,每個(gè)算法不應(yīng)該算作一個(gè)獨(dú)立的標(biāo)準(zhǔn)。PP3在一個(gè)任何變異的評(píng)估中只能使用一次。

PP4:變異攜帶者的表型或家族史高度符合某種單基因遺傳疾病。

PP5:有可靠信譽(yù)來(lái)源的報(bào)告認(rèn)為該變異為致病的,但證據(jù)尚不足以支持進(jìn)行實(shí)驗(yàn)室獨(dú)立評(píng)估。

表4 良性變異分類標(biāo)準(zhǔn)


良性影響的證據(jù) 分類

獨(dú)立證據(jù) BA1:ESP數(shù)據(jù)庫(kù)、千人數(shù)據(jù)庫(kù)、EAC數(shù)據(jù)庫(kù)中等位基因頻率>5%的變異

強(qiáng)BS1:等位基因頻率大于疾病發(fā)病率

BS2:對(duì)于早期完全外顯的疾病,在健康成年人中發(fā)現(xiàn)該變異(隱性遺傳病發(fā)現(xiàn)純合、顯性遺傳病發(fā)現(xiàn)雜合,或者X連鎖半合子)。

BS3: 在體內(nèi)外實(shí)驗(yàn)中確認(rèn)對(duì)蛋白質(zhì)功能和剪接沒(méi)有影響的變異。

BS4:在一個(gè)家系成員中缺乏共分離

注意事項(xiàng):這部分需要考慮復(fù)雜疾病和外顯率問(wèn)題

支持證據(jù)BP1:已知一個(gè)疾病的致病原因是由于某基因的截短變異,在此基因中所發(fā)現(xiàn)的錯(cuò)義變異。

BP2:在顯性遺傳病中又發(fā)現(xiàn)了另一條染色體上同一基因的一個(gè)已知致病變異,或者是任意遺傳模式遺傳病中又發(fā)現(xiàn)了同一條染色體上同一基因的一個(gè)已知致病變異。

BP3:功能未知重復(fù)區(qū)域內(nèi)的缺失/插入,同時(shí)沒(méi)有導(dǎo)致基因編碼框改變。

BP4:種統(tǒng)計(jì)方法預(yù)測(cè)出該變異會(huì)對(duì)基因或基因產(chǎn)物無(wú)影響,包括保守性預(yù)測(cè)、進(jìn)化預(yù)測(cè)、剪接位點(diǎn)影響等。注意事項(xiàng):由于做預(yù)測(cè)時(shí)許多生物信息算法使用相同或非常相似的輸入,每個(gè)算法不應(yīng)該算作一個(gè)獨(dú)立的標(biāo)準(zhǔn)。BP4在一個(gè)任何變異的評(píng)估中只能使用一次。

BP5:發(fā)現(xiàn)的變異在疾病中具有可替代的分子基礎(chǔ)。

BP6:有可靠信譽(yù)來(lái)源的報(bào)告認(rèn)為該變異為良性的,但證據(jù)尚不足以支持進(jìn)行實(shí)驗(yàn)室獨(dú)立評(píng)估。

BP7:同義變異且預(yù)測(cè)不影響剪接。

表5 遺傳變異分類聯(lián)合標(biāo)準(zhǔn)規(guī)則


致病 (i) 1個(gè)非常強(qiáng)(PVS1)和

(a) ≥1個(gè)強(qiáng)(PS1-PS4)或

(b) ≥2個(gè)中等(PM1-PM6)或

(c) 1個(gè)中等(PM1-PM6)和1個(gè)支持(PP1-PP5)或

(d) ≥2個(gè)支持(PP1-PP5)

(ii) ≥2 個(gè)強(qiáng)(PS1-PS4)或

(iii) 1個(gè)強(qiáng)(PS1)和

(a) ≥3個(gè)中等(PM1-PM6)或

(b) 2個(gè)中等(PM1-PM6)和≥2個(gè)支持(PP1-PP5)或

(c) 1個(gè)中等(PM1-PM6)和≥4個(gè)支持(PP1-PP5)

可能致病 (i) 1個(gè)非常強(qiáng)(PVS1)和1個(gè)中等(PM1-PM6)或

(ii) 1個(gè)強(qiáng)(PS1-PS4)和1-2個(gè)中等(PM1-PM6)或

(iii) 1個(gè)強(qiáng)(PS1-PS4)和≥2個(gè)支持(PP1-PP5)或

(iv) ≥3個(gè)中等(PM1-PM6)或

(v) 2個(gè)中等(PM1-PM6)和≥2個(gè)支持(PP1-PP5)或

(vi) 1個(gè)中等(PM1-PM6)和≥4個(gè)支持(PP1-PP5)

良性 (i) 1個(gè)獨(dú)立(BA1)或

(ii) ≥2個(gè)強(qiáng)(BS1-BS4)

可能良性 (i) 1個(gè)強(qiáng)(BS1-BS4)和1個(gè)支持(BP1-BP7)或

(ii) ≥2個(gè)支持(BP1-BP7)

意義不明 (i) 不滿足上述標(biāo)準(zhǔn)或

(ii) 良性和致病標(biāo)準(zhǔn)相互矛盾

表6 評(píng)估人群中變異頻率來(lái)策劃變異分類

    本站是提供個(gè)人知識(shí)管理的網(wǎng)絡(luò)存儲(chǔ)空間,所有內(nèi)容均由用戶發(fā)布,不代表本站觀點(diǎn)。請(qǐng)注意甄別內(nèi)容中的聯(lián)系方式、誘導(dǎo)購(gòu)買等信息,謹(jǐn)防詐騙。如發(fā)現(xiàn)有害或侵權(quán)內(nèi)容,請(qǐng)點(diǎn)擊一鍵舉報(bào)。
    轉(zhuǎn)藏 分享 獻(xiàn)花(0

    0條評(píng)論

    發(fā)表

    請(qǐng)遵守用戶 評(píng)論公約

    類似文章 更多