第一作者:吳悠 博士研究生 通訊作者:彭永臻 教授 論文DOI: 10.1016/j.watres.2025.123101 ![]() ![]() ![]() ![]() ![]() 氮去除性能 Fig. 1. Variation of (a) NH4+?N concentration of influent, effluent, and NH4+?N (ammonia) removal efficiency (ARE); (b) chemical oxygen demand (COD) concentration of influent, effluent, and COD removal efficiency (CRE); (c) NO2-?N, NO3-?N concentration in unit 4, and nitrite accumulation rate (NAR); (d) total inorganic nitrogen (TIN) concentration of influent, effluent, and removal efficiency (NRE). Copyright 2025, Elsevier Inc. 在整個運行過程中,中試規(guī)模系統(tǒng)的 NH4+-N去除率 (ARE) 穩(wěn)定在 93.1 ± 4.5% 到 95.7 ± 2.8% 之間。在第一階段未投加HA時(第 1-65 天),進(jìn)水和出水的總無機氮 (TIN)分別為 19.8 ± 3.2 mg/L和6.0 ± 2.3 mg/L,相應(yīng)的總氮去除率 (NRE) 為 70.6 ± 7.3%。在第二階段(第 66-106 天),連續(xù)添加 HA將亞硝累積率 (NAR) 提高到 50.8%,出水 TIN 降低到 3.9 ± 1.6 mg/L,并將NRE提高到82.9±6.2%。在第三階段(第 107-183 天),HRT縮短至8 h,NAR 穩(wěn)定在67.6±4.6%,出水TIN進(jìn)一步降至2.9±1.3 mg/L,NRE達(dá)到 84.2±5.5%。在HA投加期間,厭氧釋磷量達(dá)到峰值 6.4 mg/L,在第三階段穩(wěn)定在1.9±0.4 mg/L。 脫氮路徑 Fig. 2. Variations of inorganic nitrogen in each unit: (a) day 31 to 34 in Phase Ⅰ; (b) day 94 to 98 in Phase Ⅱ; (c) day 153 to 155 in Phase Ⅲ. Variations of (d) nitrogen removal contribution during each process, the black circle represents the mean, and the black bar represents the quartile (25–75%) line; (e) nitrogen removal rate during the anoxic process of thesystem. (f) Variations of intracellular carbon sources (PHAs and Gly) in different operational phases: (days 31 to 34 in Phase I, 94 to 98 in Phase II, and153 to 155 in Phase III). Copyright 2025, Elsevier Inc. HA投加后,系統(tǒng)好氧段硝氮生成量顯著減少,且出現(xiàn)了明顯的亞硝積累。系統(tǒng)好氧段脫氮貢獻(xiàn)從第一階段的2.4±3.4%升高至25.8±8.1%,同時系統(tǒng)缺氧段總氮去除速率顯著提高,由1.63 mg N/(L·h)提升至2.35 mg N/(L·h)。 多組學(xué)分析 Fig. 3. Variations in abundance (TPM value) of functional genes related to a) nitrogen metabolism; and b) phosphorus metabolism for the sludge samples on day 57 and day 162 based on the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. Copyright 2025, Elsevier Inc. Fig. 4. Variations in transcript level (FPKM value) of functional genes related to a) nitrogen metabolism; and b) phosphorus metabolism for the sludge samples on day 57 and day 162 based on the KEGG database. Row normalizations were conducted to compare variations of different stages. Copyright 2025, Elsevier Inc. 通過宏基因組和宏轉(zhuǎn)錄組分析,Nitrospira菌屬的轉(zhuǎn)錄活性下降,控制亞硝硝化的nxr基因轉(zhuǎn)錄水平也出現(xiàn)了下降,進(jìn)一步促進(jìn)了短程硝化的形成。HA 影響了 PAOs 的代謝,在厭氧階段過度釋磷導(dǎo)致了細(xì)胞內(nèi)poly-P的過度消耗,而在好氧階段ppk 的表達(dá)受到抑制,阻礙了poly-P的合成,這使得作為PAOs供能途徑的poly-P循環(huán)在一定程度上被破壞,從而抑制了 PAOs的活性,有利于 GAOs在碳源競爭中獲得占優(yōu)。Ca. Competibacter作為內(nèi)源反硝化的主要貢獻(xiàn)者,相對豐度由0.16%顯著提升至1.13%。總而言之,這些轉(zhuǎn)變促進(jìn)了中試規(guī)模AOA 系統(tǒng)的深度脫氮。 ![]() 本研究首次在中試規(guī)模AOA系統(tǒng)中驗證了低濃度HA連續(xù)投加的高效性和穩(wěn)定性。研究表明,HA通過調(diào)控微生物群落和代謝路徑,顯著提升了系統(tǒng)的內(nèi)源反硝化性能,尤其是GAOs在內(nèi)源代謝中的主導(dǎo)作用。盡管該方法在實現(xiàn)同步脫氮除磷方面仍有改進(jìn)空間,但在低碳氮比廢水處理中展示了巨大潛力。未來工作應(yīng)進(jìn)一步優(yōu)化HA的投加方案,并探索其在實際規(guī)模中實現(xiàn)氮磷協(xié)同去除的潛力。同時,需要針對不同進(jìn)水條件和長期運行中的可能問題進(jìn)行深入研究,以支撐該策略在工程應(yīng)用中的推廣。 ![]() Wu, Y., Wang, H., Zhang, L., Zeng, W. and Peng, Y. 2025. Multi-omics reveals mechanism of hydroxylamine-enhanced ultimate nitrogen removal in pilot-scale anaerobic/aerobic/anoxic system. Water Res 274, 123101 https://www./science/article/pii/S0043135425000156?via%3Dihub ![]() |
|
來自: 江西擬態(tài)王格 > 《待分類》