日韩黑丝制服一区视频播放|日韩欧美人妻丝袜视频在线观看|九九影院一级蜜桃|亚洲中文在线导航|青草草视频在线观看|婷婷五月色伊人网站|日本一区二区在线|国产AV一二三四区毛片|正在播放久草视频|亚洲色图精品一区

分享

如圖所示.在Rt△ABC中.∠ACB=90°.AC=BC.D為BC邊上的中點(diǎn)

 123xyz123 2023-08-07 發(fā)布于湖南

題目?jī)?nèi)容

如圖所示,在Rt△ABC中,∠ACB=90°,AC=BC,D為BC邊上的中點(diǎn),CE⊥AD于點(diǎn)E,BF∥AC交CE的延長(zhǎng)線于點(diǎn)F
求證:BD=BF.
分析:先根據(jù)Rt△ABC中,∠ACB=90°,∠2+∠1=90°,再根據(jù)BF∥AC可知∠ACB=∠CBF=90°,由CE⊥AD可知∠2+∠3=90°,由∠2+∠1=90°可知∠1=∠3,故可得出△ACD≌△CBF,根據(jù)全等三角形的性質(zhì)即可得出結(jié)論.
解答:證明:∵Rt△ABC中,∠ACB=90°,AC=BC,
∴∠1+∠2=90°,
∵BF∥AC,
∴∠ACB=∠CBF=90°,
∵CE⊥AD,
∴∠2+∠3=90°,
∴∠1=∠3,
在△ACD與△CBF中,
∠1=∠3
AC=BC
∠ACB=∠CBF

∴△ACD≌△CBF,
∴BF=CD,
∵D為BC邊上的中點(diǎn),
∴BD=CD,
∴BD=BF.
點(diǎn)評(píng):本題考查的是全等三角形的判定與性質(zhì),熟知全等三角形的ASA定理是解答此題的關(guān)鍵.

    本站是提供個(gè)人知識(shí)管理的網(wǎng)絡(luò)存儲(chǔ)空間,所有內(nèi)容均由用戶發(fā)布,不代表本站觀點(diǎn)。請(qǐng)注意甄別內(nèi)容中的聯(lián)系方式、誘導(dǎo)購(gòu)買等信息,謹(jǐn)防詐騙。如發(fā)現(xiàn)有害或侵權(quán)內(nèi)容,請(qǐng)點(diǎn)擊一鍵舉報(bào)。
    轉(zhuǎn)藏 分享 獻(xiàn)花(0

    0條評(píng)論

    發(fā)表

    請(qǐng)遵守用戶 評(píng)論公約

    類似文章 更多