張宿 摘要γ-氨基丁酸(gamma-aminobutyric acid ,GABA)是生物應激反應體系的重要氨基酸,廣泛分布于自然界中。長久的進化使得生物可以通過GABA的H+和Ca2+依賴方式響應于內(nèi)外界應激??梢酝ㄟ^腐胺途徑和GABA分流途徑干涉生物內(nèi)能量代謝、碳氮代謝的方式緩解生物體內(nèi)壓力。GABA在生物體內(nèi)組織發(fā)育和形成、生物內(nèi)和生物間的信號交流中扮演著重要角色。作為癲癇等疾病的特效藥,可降解尼龍的前體物質(zhì)GABA有著長足的發(fā)展空間。分析了GABA的生理機制,綜述了谷氨酸脫羧酶及其基因定點突變的研究,最后對GABA的制備方法與應用進行了介紹。 關(guān)鍵詞γ-氨基丁酸;谷氨酸脫羧酶;應激調(diào)節(jié) 中圖分類號Q 517文獻標識碼A 文章編號0517-6611(2019)18-0001-09 The Physiological Mechanism and Application of γ-aminobutyric Acid ZHANG Xiu (College of Life Sciences,Sichuan Normal University,Chengdu,Sichuan 610101) Abstractγ-aminobutyric acid(GABA) is important amino acid of biological stress reaction,widely distributed in nature.In long-term evolution,biological GABA levels can be regulated by H+ and Ca2+ ions levels are altered by intra- and inter-biostimulation.It can be used to relieve stress of biological by the way of putrescine metabolism and GABA shunt pathway interfered with energy metabolism and C/N metabolism.GABA plays an important role in the tissue development and formation intra-and inter-biosignal communicate.As a special medicine of epilepsy,etc.disseases,the precursor of degradable nylon,GABA has a long-term development space.The physiological mechanism of GABA was analyzed, the research of glutamate decarboxylase and its site-directed mutation were reviewed, and the preparation and application of GABA were introduced. Key wordsGABA;GAD;Stress regulation γ-氨基丁酸(gamma-aminobutyric acid)是一種四碳非蛋白氨基酸,簡稱GABA,廣泛存在于自然界中。GABA最早于1910年在腐生菌中發(fā)現(xiàn)[1]。在隨后的100年中,研究者相繼在不同生物中檢測到。GABA由谷氨酸脫羧酶(GAD,glutamic acid decarboxylase)催化L-谷氨酸(L-Glu,L-glutamic acid)脫羧而成[2-3]。其分子量為103.1,分子式為C4H9NO2。GABA高度溶于水,在生理pH條件下為兩性分子[4]。GABA在氣態(tài)時呈高度折疊態(tài),固態(tài)時為舒展狀態(tài),液態(tài)具有包括環(huán)狀結(jié)構(gòu)在內(nèi)的多種分子形態(tài)[5-6]。至今為止,GABA已被確定與多種代謝應激有關(guān),同時也作為一種信號分子存在于自然界中[7-11]。作為動物中主要的抑制性神經(jīng)遞質(zhì)[12],GABA具有多種功能[13]。在微生物細胞中受到酸的調(diào)控[14-15]。因此,GABA作為一種常見的響應外部應激的代謝物質(zhì)發(fā)揮重要的調(diào)控作用。在生物體中有2個途徑可以合成GABA。一種是通過精氨酸(Arg,argimime)和精氨(spermine)代謝過程合成GABA。其具體過程:精氨酸通過精氨酸脫羧酶(ADC,arginase decarboxylase)催化得到瓜丁酸(agmatine),瓜丁酸經(jīng)瓜丁氨酰脫羧酶(AGIH,agmatine imidohydrolase)以及氨甲酰腐胺酰胺水解酶(CPAH,carbamolputreacine amidohydrolase)生成腐胺(putrescine)。也可以通過精氨酸酶催化生成鳥氨酸(ornithine),再經(jīng)鳥氨酸脫羧酶(ODC,ornithine decarboxylase)生成腐胺。同樣精胺(spermine)也可以經(jīng)由反轉(zhuǎn)多氨氧化酶(BCPAO,back-conversion polyamine oxidase)2次催化得到一分子腐胺和兩分子3-氨基丙醛(APAL,3-aminopropionaldehyde)。腐胺經(jīng)二胺氧化酶(damine oxidase)催化脫去一分子NH3+得到γ-氨基丁醛(γ-Aminobutyraldehyde)。后者再經(jīng)過4-氨基丁醛脫羧酶(ABALDH,γ-aminobutyraldehyde dehydrogenase),以及吡咯烷脫氫酶(PDH,pyrroline dehydregenase)生成γ-氨基丁酸[16-17]。 途徑二是三羧酸循環(huán)的一個分支,該過程起始于三羧酸循環(huán)中的α-酮戊二酸(α-ketoglutarate),α-酮戊二酸經(jīng)由谷氨酸脫氫酶(GDH,glutamate dehydregonase)催化得到谷氨酸,再經(jīng)過GAD催化脫去α羧基得到GABA[2-3]。GABA經(jīng)由GABA轉(zhuǎn)氨酶(γ-aminobutyric acid transaminase)催化生成琥珀酸半醛(succinic semialdehyde),琥珀酸半醛再經(jīng)琥珀酸半醛脫氫酶(SSADH,succinic semialdehyde dehydregenase)轉(zhuǎn)化為琥珀酸(succinic)再次進入三羧酸循環(huán)。而琥珀酸半醛可被琥珀酸半醛還原酶(SSAR,succinic semialdehyde reductase)和乙醛酸還原酶(GLYR,glyoxylate reductase)可逆轉(zhuǎn)化為γ-羥基丁酸(GHB,γ-hydroxybutyrate)[4,9-10](圖1)。 1GABA的生理機制 在生物體內(nèi)GABA作為信號分子發(fā)揮重要作用[11,18-20]。在高等生物中GABA受體體系的研究較為深入,GABA在動物體內(nèi)作為動物的主要抑制性神經(jīng)遞質(zhì)和通過GABA受體發(fā)揮作用[21]。同時GABA可以兼作營養(yǎng)因子為生物體內(nèi)提供能量[22-25]。此外還能調(diào)節(jié)細胞內(nèi)多種生理信息[4,7,21-23,26]。 1.1GABA受體 GABA在昆蟲中的受體為離子型受體,也是大部分殺蟲劑的靶標。外部藥物可以通過GABA離子型受體抑制或殺死昆蟲[19,27]。 動物中的GABA受體分為GABAA和GABAB兩大類受體。這兩類受體均可以被GABA激活。GABAA受體為多聚配體的門控(Cl-)通道離子型或離子滲透型受體。GABAB受體為代謝型的G蛋白偶聯(lián)受體,可調(diào)控Ca2+和K+的離子通道[28]。GABAA受體是異戊二烯配體門控離子通道超家族成員,這個家族還包括煙堿乙酰膽堿受體、甘氨酸受體和 5-HT3受體[29]。其基本結(jié)構(gòu)包括細胞外N末端結(jié)構(gòu)域、4個跨膜結(jié)構(gòu)域以及TM3和TM4之間的擴展區(qū)域,具有介導運輸和傳遞信號的作用[30]。哺乳動物中已經(jīng)鑒定出19種GABAA受體亞基,可分為α(1-6)、β(1-3)、γ(1-3)、δ、ε、π和ρ(1-3)等8類[31]。大多數(shù)GABAA受體包括2個α、2個β和1個γ亞基[32]。GABA在GABAA受體上的α、β、γ亞基有2個結(jié)合位點,位于α和β之間[33]。GABAA受體是激動劑、抑制劑和拮抗劑、驚厥劑的靶標。這些藥物包括一些抗焦慮藥物、抗驚厥的苯二氮卓藥物、印防已毒素類驚厥劑、全身麻醉劑、巴比妥鹽、異丙酚、乙醇低效作用的藥品、神經(jīng)活性類、固醇類藥等[34]。GABAARS受體與記憶分裂癥、老年癡呆癥等神經(jīng)類疾病的治療具有密切關(guān)系[35]。 GABAB受體是相對緩慢的G蛋白偶聯(lián)受體家族成員[34]。GABAB受體由7個跨膜結(jié)構(gòu)域組成,G蛋白在細胞內(nèi)與跨膜結(jié)構(gòu)域結(jié)合。這個結(jié)構(gòu)域由α、β、γ 3個亞基組成,β和γ形成復合體。受體失活下α與β、γ結(jié)合在一起,受體被激活時亞基復合體分離,并與其他受體靶標結(jié)合發(fā)揮作用[36]。GABAB受體與谷氨酸受體具有明顯的相似性,均屬于G蛋白偶聯(lián)受體家族3成員[37]。GABAB受體與精神分裂癥[38]、藥物成癮[39]、癲癇[40]等治療有關(guān)。 植物中,GABA受體最近才被發(fā)現(xiàn)。研究表明,GABA在不同組織中表達水平不同[41],且GABA響應于幾乎所有應激反應,以及不同濃度下發(fā)揮的作用具有差異。大部分研究者認為植物谷氨酸受體GLR與動物IGLUR受體(動物谷氨酸受體)相似[7]。而動物GABAB受體與谷氨酸受體存在序列相似性[37]。推測植物GABA受體可能存在于線粒體 膜上[42]。 植物GABA受體的陰離子通道是可被Al3+、陰離子激活或者GABA負調(diào)節(jié)的植物蘋果酸轉(zhuǎn)運蛋白(alaminium activated malate transporters,ALMTS)受體家族。ALMTS高度保守,含有12個氨基酸結(jié)構(gòu)域,與GABAA受體一致。因此ALMTS受體是植物GABA受體[7]。在植物GABA代謝過程中,ALMTS受體膜上陰離子流被改變,將化學信號轉(zhuǎn)變?yōu)槟ば盘朳43]。GABA可抑制ALMTS受體并使其膜電位超極化,降低興奮。被陰離子激活后ALMT則會使膜去極化發(fā)揮作用[7]。擬南芥ALMT基因家族包含14個基因。ALMT家族N端高度相似,有6~7個跨膜結(jié)構(gòu)域的疏水核心。其C端親水可能含有2個跨膜結(jié)構(gòu)域或錨定結(jié)構(gòu)域。其N-末端組成了滲透通道,而多變的C端是功能的基礎(chǔ)。同時ATALMT9可能由四聚體組裝而成[44]。目前發(fā)現(xiàn)ALMT家族除參與解毒外還具有其他作用[45]。 1.2在高等動物中GABA的藥用價值 在動物中,GABA最早被發(fā)現(xiàn)位于動物的腦組織中[3,46]。隨后在貓耳核中發(fā)現(xiàn)存在GABA和GABA-T的蹤跡[13],小鼠的肌神經(jīng)細胞群[47]、胃[48]以及兩棲動物的胰腺內(nèi)也檢測到GABA[49]。在外源注射GABA的試驗中,觀察到GABA對疼痛調(diào)節(jié)具有抑制作用[21]。通過研究GABA介導的大鼠下丘腦神經(jīng)元的反應,觀察到GABA可以誘導膜電位去極化,并導致神經(jīng)元的活動增加,這種現(xiàn)象可能導致神經(jīng)元的興奮或者抑制作用[50]。利用外部藥物注射觀察GABA在應激中發(fā)揮的作用中,發(fā)現(xiàn)注射SCH23390(R-(+)-8氯-2-3,4-5-四氫-3-甲基-5-苯基-1氫-3-苯并氮雜-7-醇即潛在的苯并安定抗精神病藥物,其在多巴胺系統(tǒng)上具有獨特的作用[51]會增加對側(cè)前額葉皮層(prefrontal cortex,PFC)的谷氨酸水平。其他刺激介導的GABA水平上升會被SCH23390介導的反應所抑制。由于SCH23390具有抑制GABA應激的作用,因此GABA受體可以雙向調(diào)節(jié)GABA的應激作用[52]。GABA存在于周身血液循環(huán)中[22],與許多神經(jīng)元的遷移[53]、軸突發(fā)芽有關(guān)。GABA和谷氨酸可以使大鼠胚胎新皮層細胞去極化,通過刺激細胞內(nèi)Ca2+增加,降低DNA的合成,進而在調(diào)節(jié)新皮質(zhì)神經(jīng)發(fā)生起作用[54]。GABA和谷氨酸使得胚胎腦室的心室區(qū)神經(jīng)祖細胞增殖增加,使腦下室區(qū)神經(jīng)祖細胞增殖 減少[55]。 GABA具有特殊的藥用價值,其對癲癇的治療是近年來的熱點之一。在幾年來的抗神經(jīng)性疼痛研究中發(fā)現(xiàn)大部分合成的GABA三唑衍生物具有抗癲癇、陣痛和抗痛覺過敏的作用[56]。通過對癲癇發(fā)病患者和非癲癇患者的GAD比對,發(fā)現(xiàn)癲癇患者GAD活性比非癲癇患者低[57]。后來也有研究發(fā)現(xiàn)GABA的釋放和GABA存儲機制與癲癇存在密切關(guān)系[58-59]。且GABA抑制作用減弱會導致癲癇發(fā)作[60]。通過增加GABA代謝的藥物對癲癇治療已初見成效[61]。目前癲癇發(fā)病原因被認為是神經(jīng)自興奮和抑制之間的平衡被破壞,而GABA在這其中起著重要的平衡作用[62-63]。癲癇患者GAD神經(jīng)元亞群易在發(fā)病中受損,導致GABA能神經(jīng)元減少,而其他神經(jīng)元則會上調(diào)GAD的表達以維持這種平衡[64]。 作為一個作用廣泛的氨基酸,GABA還能影響癌細胞的增殖和凋亡[65]、集落形成和侵襲[66-67],導致癌細胞有絲分裂活性變化[68],可作為治療癌癥的輔助藥物[69]。同樣GABA可以提高自發(fā)性壓力感受器反射功能(baroreceptor reflex function,BRS),調(diào)節(jié)心率降低血壓[70]。它還可以拮抗由咖啡因引起的睡眠障礙,且不影響自主活動[71]。另外,也有研究發(fā)現(xiàn)GABA具有治療糖尿病[72]等作用。 GABA有上述積極的作用同時,有時也不總是那么盡人意,甚至在動物體內(nèi)還有許多不明確的生理和藥理作用[73],需要更加謹慎的處理GABA和動物之間的關(guān)系。 1.3GABA的生物抗逆生理及調(diào)控作用 GABA長久以來被認為與植物多種應激和防御系統(tǒng)有關(guān)。GABA會隨著植物受到刺激而升高,被認為是植物中響應于各種外界變化、內(nèi)部刺激和離子環(huán)境等因素如pH、溫度、外部天敵刺激的一種有效機制。GABA還可以調(diào)節(jié)植物內(nèi)環(huán)境如抗氧化、催熟、保鮮植物等作用。近年來GABA在植物中也被發(fā)現(xiàn)作為信號分子在植物中傳遞擴大信息[11,18-19,42,74]。GABA曾在大豆[75]、擬南芥[76]、茉莉[74]、草莓[77]等植物中相繼發(fā)現(xiàn)。低濃度的GABA有助于植物生長發(fā)育,高濃度下又會起相反的作用[11]。 1.3.1GABA對外部酸化的響應。 低pH下GABA會在細胞內(nèi)快速增加[78],這種GABA的積累在微生物[79]和動物[80]中也存在。植物在酸性pH下細胞內(nèi)H+隨之升高,誘導細胞內(nèi)GABA含量增加[78]。該GABA的合成過程消耗H+,使得細胞內(nèi)酸化得到緩解[81]。在微生物中也存在這種快速的反應機制,在產(chǎn)生GABA的同時,會增加質(zhì)子呼吸鏈復合物的表達,促進ATP合成。并且上調(diào)F1F0-ATP水解酶活性,促使酸性條件下ATP依賴的H+排出過程[79]。在動物中,也會向外排出GABA和谷氨酸以此來改變細胞外環(huán)境的pH[82]。更重要的是,GABA在生理環(huán)境下為兩性離子,因此在酸堿調(diào)節(jié)中發(fā)揮一定作用[4]。 1.3.2GABA對昆蟲的防御作用。 GABA有助于植物對外界天敵的防御。當昆蟲取食時由于植物受傷導致細胞破裂和組織受傷,這種機械切割會刺激植物中Ca2+的增加,植物在Ca2+刺激下分泌GABA作為一種抵御昆蟲取食的措施。且在此過程中不存在茉莉酸類信號參與GABA的積累[74]。昆蟲存在離子型GABA受體,其中果蠅的GABA門控氯離子通道亞基RDL(resistant to dieldrin)是許多殺蟲劑藥物的作用靶標[27]。GABA誘導使得GABA受體的單電流降低[83]。具體為GABA在無脊椎動物中通過GABA受體門控的氯離子通道起作用,與大多數(shù)殺蟲劑相同,通過GABA受體氯離子通道,使Cl-在電化學梯度的驅(qū)使下流向下游,導致質(zhì)膜超極化,并抑制昆蟲取食[4,19]。而在過量表達GABA的煙草植物中,接種北方線蟲,發(fā)現(xiàn)其雌性成年線蟲的繁殖能力整體下降,這種方式可以使植物達到防御天敵的效果[18]。在對女貞子被草食女娥幼蟲取食過程中,發(fā)現(xiàn)女貞子會降低自身賴氨酸活性使得蛋白質(zhì)無營養(yǎng),而女娥幼蟲在此期間會分泌甘氨酸、β-丙氨酸、胺等分子抑制植物賴氨酸的減少,這種植物與草食昆蟲的交流過程也證明了GABA作為信號分子的 功能[20]。 1.3.3GABA對高等生物在高溫和冷凍下的保護作用。在小麥開花期間噴灑GABA(200 mg/L),可以調(diào)節(jié)膜穩(wěn)定性,增加抗氧化能力等,減少了小麥高溫下的損失[84];外源GABA的施用對黃瓜幼苗生長也有明顯的作用[85]。高溫會抑制中樞GABA能神經(jīng)元活性,激活膽堿類神經(jīng)系統(tǒng)并引起體溫升高[86]。長期處于高溫下,下丘腦的GABA能神經(jīng)元活性會增加以適應環(huán)境和調(diào)節(jié)體溫[87]。GABA會在血漿中升高進而抑制冷敏神經(jīng)核血漿中兒茶酚胺的濃度,達到降低食道溫度的目的[88]。 低溫會降低植物的生物合成能力,對重要功能造成干擾,并產(chǎn)生永久性傷害[89]。動物在低溫下也會導致?lián)p傷甚至造成更嚴重的傷害[90]。低溫下生物GABA表達會上調(diào),這與低溫的耐受性存在關(guān)聯(lián)[91-92]。在低溫下,75%的代謝物會增加,包括氨基酸、糖類、抗壞血酸鹽、腐胺和一些三羧酸循環(huán)中間體[93]。能量代謝涉及的氨基酸代謝,酶類的轉(zhuǎn)錄豐度均會增加[94]??梢酝ㄟ^增強GABA分流途徑產(chǎn)生ATP以及積累GHB[95]。另外低溫下利用褪黑霉素可以使精胺、亞精胺和脯氨酸積累,促使二胺氧化酶表達升高。通過腐胺途徑合成GABA,使得H2O2積累和苯丙烷途徑通量下降以達到防腐和抗寒的效果[77]。 1.3.4GABA在抗氧化和氧化過程中的作用。 GABA分流作為三羧酸循環(huán)分支途徑的中間產(chǎn)物,與能量循環(huán)關(guān)系密切[4]。同時GABA作為氧化代謝物的調(diào)控者發(fā)揮作用。擬南芥SSADH突變體暴露于高溫下生長,發(fā)現(xiàn)其活性氧中間體(reactive oxygen intermediate,ROI)積累,使得植株死亡[96]。證明ROI與GABA存在關(guān)系。同樣SSADH和GABA-T基因的突變株在高溫下存在大量的ROI,利用ROI消除劑N-叔丁基-α-苯基硝酮(PBN)可使GABA大量積累,從而提高酵母的存活率[97]。因此,認為GABA分流途徑在抑制高溫下ROI具有作用。在GABA分流過程中,SSA可以經(jīng)由GLYR/SSAR轉(zhuǎn)化為GHB,而GHB與ROI存在密切關(guān)系。在SSADH缺失突變株中的GHB與ROI存在大量積累,而瓜巴特林可以抑制這種GHB與ROI的積累,并抑制了過氧化死亡[98]。GABA分流過程可以減少ROI的積累使得生物免于高溫帶來的氧化損傷以及過氧化衰亡。 1.3.5GABA維持碳氮平衡。 碳氮代謝平衡涉及許多生理過程,包括能量代謝、氨基酸代謝等。由于GABA合成和分流途徑涉及氮代謝,GABA也是能量循環(huán)中三羧酸循環(huán)的重要組成部分,GABA分流途徑與呼吸鏈競爭SSADH,因此長時間以來GABA被認為是碳氮代謝的重要一環(huán)[4,42]。三羧酸循環(huán)分支的谷氨酸合成GABA途徑是植物快速響應外部刺激的關(guān)鍵因素之一[16-17]。絕大部分NH3+是通過谷氨酰胺合成酶/谷氨酸合成酶途徑合成(glutamine synthetase/glutamate synthetase,GS/GOGAT),被認為是氨基酸的主要合成途徑[25]。游離的氨基分子大部分通過谷氨酰胺固定,谷氨酸被認為是植物老根中氮主要的積累形式,氮存儲于精氨酸等氨基酸中,同時精氨酸也可用于運輸,滿足生物體的氮需求[25,99]。同樣氨基酸也通過轉(zhuǎn)化為三羧酸循環(huán)的前體或中間體參與能量代謝過程[25]。在對菠菜的研究中發(fā)現(xiàn)脯氨酸占總游離氨基酸的8.1%~36.1%,GABA占12.8%~22.2%,谷氨酸占5.6%~21.5%。谷氨酸是GABA和脯氨酸的前體物質(zhì),低溫下植物會使谷氨酸的氮分流進入GABA和脯氨酸調(diào)控氮的代謝途徑[8]。另外在50 mmol/L GABA下培養(yǎng)的擬南芥中除NADP+依賴性檸檬酸脫氫酶、根和芽中谷氨酰胺合成酶、芽中磷酸烯醇丙酮酸羧化酶外,幾乎所有的初級氮代謝和硝酸鹽吸收有關(guān)的酶活性均受到影響[100]。而在NaCl條件下培養(yǎng)的擬南芥中,發(fā)現(xiàn)GABA積累的同時帶動擬南芥整體氨基酸的增加[10]。在分別利用不同氮化合物 (10 mmol/L NH4Cl, 5 mmol/L NH4NO3,5 mmol/L谷氨酸和5 mmol/L的谷氨酰胺)作為唯一氮源培養(yǎng)的擬南芥葉片中,其GAD活性和蛋白質(zhì)水平不同,說明GAD在氮代謝中發(fā)揮作用[101]。 在NO脅迫下的香蕉中也發(fā)現(xiàn)了GAD活性上升、GABA和香蕉多巴胺增加的現(xiàn)象[102]。鹽脅迫下谷氨酸脫氫酶活性與GAD的表達瞬時上升,進而提高GABA分流等相關(guān)途徑的通量以調(diào)節(jié)碳氮平衡。應激下NADH:NAD+和ADP:ATP的比值也能影響GABA-T,從而使GABA積累。鹽脅迫下植物更多地利用C/N平衡途徑緩解壓力[9]。 1.3.6GABA在干旱和水澇中的作用。 20世紀末,人們就發(fā)現(xiàn)干旱可以降低根的固氮和O2的擴散,使得植物缺氧而導致GABA的積累[103]。低氧條件下谷氨酸和天冬氨酸含量增加[24]。干旱下GAD活性提高,GABA-T快速積累[104]。干旱條件下,根系、莖的生長和葉面積伸展被抑制,活性氧增加,低分子滲透調(diào)節(jié)物質(zhì)如GABA等氨基酸、多元醇、有機酸產(chǎn)量增加,以及抗氧化損傷的酶表達均上調(diào)[105]。研究表明,干旱條件下,與細胞內(nèi)穩(wěn)態(tài)、活性氧的清除、結(jié)構(gòu)蛋白穩(wěn)定保護、滲透調(diào)節(jié)劑、轉(zhuǎn)運蛋白等有關(guān)的基因表達上調(diào)[106]。外源GABA使得植物保持較高的相對含水量,降低電解質(zhì)滲漏、脂質(zhì)、過氧化物、碳代謝并能提高膜穩(wěn)定性[107-108]。此外外源GABA也可以誘導GABA-T和α-戊酸脫氫酶活性上升,抑制GAD活性使得GABA和谷氨酸增加。同時GABA加速多胺合成,抑制多胺分解,并進一步激活δ-1-吡咯林-5-羧酸合成酶和脯氨酸脫氫酶以及鳥氨酸-δ-氨基轉(zhuǎn)移酶活性,致使GABA預富集物的高度積累和代謝[109]。GABA還可以通過促進葉綠素表達,進而使得過氧化氫酶(catalase,CAT)、過氧化物酶(peroxidase,POX)活性增加,提高脯氨酸和糖含量,調(diào)節(jié)滲透和降低氧化[110]。 植物在水澇下pH會下降[111]。長時間水澇會使土壤缺氧且短時間內(nèi)水澇使得GABA升高[112-113]。而水澇下氣孔關(guān)閉與脫落酸存在直接關(guān)系[114]。由于H+上升和缺氧會導致GABA增加[4,42]。同時丙氨酸的積累可提高缺氧條件下植物的生存能力[115]。在缺氧條件下GABA可以通過間接調(diào)節(jié)使得光合作用增強,降低氣孔限制值[116],使得通氧量加大。缺氧條件下GAD活性上升,而GABA可以緩解缺氧對植物幼苗的傷害,而且外源GABA可以使低氧條件下根生長抑制得以緩解[117],快速生長出不定根。不定根生長也可以緩解植物的缺氧情況[118]。 另外,水澇缺氧條件下除GABA、谷氨酸以及丙氨酸外其他與三羧酸循環(huán)有關(guān)的氨基酸水平均下降。GABA與谷氨酸可作為丙氨酸的直接合成底物,通過這種厭氧途徑生成2倍于糖酵解產(chǎn)生的ATP,保證供能[115,119]。GABA還具有消除活性氧中間體以及為植物解毒和間接通過H2O2信號作用防止細胞程序性死亡(programmed cell death,PCD)[120-121],以及發(fā)揮其他作用。 1.3.7GABA的其他生理作用。 50 mmol/L GABA和不同鹽濃度會對植物幼苗產(chǎn)生不同的影響,當NO3-離子低于 40 mmol/L時,GABA會刺激根伸長,當NO3-離子大于 40 mmol/L時GABA會抑制根伸長。并且GABA刺激低濃度的NO3-吸收,抑制高濃度NO3-的攝取,而GS等酶被氮調(diào)控,以上研究認為氮對調(diào)控植物生長有一定作用[100]。NaCl脅迫下,擬南芥POP2-1突變體對NaCl敏感,使得GABA代謝總體發(fā)生上調(diào)[10]。在NaCl(50 mmol/L)刺激下,植物的糖基化代謝會發(fā)起變化,并影響包括三羧酸循環(huán)、GABA代謝、氨基酸合成和莽草酸介導的次級代謝等發(fā)生變化[122]。較高的鹽離子會導致大豆的多胺氧化降解為GABA[123]。植物GABA受體具有調(diào)節(jié)pH和Al3+的根耐受性[7]。 細菌侵染過程中的植物GAD表達量和γ-羥基丁酸轉(zhuǎn)錄豐度會上升,致使GABA升高[124]。高GABA合成水平的煙草對根癌土壤桿菌C58感染敏感性有所下降。GABA可誘導農(nóng)桿菌ATTKLM操縱子表達,使得N-(3-氧代辛酰基)高絲氨酸內(nèi)酯(OC8HSL)的濃度減少,群體感應信號(或激素)下調(diào),影響其對植物的毒性[125]。GABA在植物與細菌的信號交流中也發(fā)揮作用,GABA可以抑制細菌內(nèi)Hrpl基因表達(Hrpl基因編碼蛋白使得植物致敏或引起其組織疾病[126]),同時抑制植物體內(nèi)hrp基因表達,使得植物免于過敏反應(hrp:控制植物病原體致病能力,并引起過敏反應[127])[11]。 此外,GABA還具有催熟作用。GABA可以通過刺激1-氨基環(huán)丙烷-1-羧酸(ACC)合成酶轉(zhuǎn)錄豐度刺激乙烯生物合成[128]。而水澇下乙烯可以通過促進不定根的生長為植物提供氧氣[129]。 高濃度GABA可抑制植物和細菌GABA轉(zhuǎn)氨酶(GABA-T,GABT)突變體的生長,高濃度下可抑制細菌在植物內(nèi)的繁殖[11]。番茄中的GABA-T被抑制會導致GABA的積累,使番茄出現(xiàn)矮小癥[130]。 在動物中,GABA在線粒體中以濃度依賴方式氧化丙酮酸和脂肪提供ATP。GABA也可以通過抑制腫瘤壞死因子介導的活性H2O2增加,從而抑制炎癥的發(fā)生[22]。 2谷氨酸脫羧酶及其基因定點突變的研究 谷氨酸脫羧酶(GAD,glutamic acid decarboxylase)催化谷氨酸生成GABA和二氧化碳,GAD在維生素B6等吡哆醇化合物的輔助下發(fā)揮作用,為一種吡哆醛-5-磷酸(Pyridoxal-5-phosphatemonohydrate,PLP)依賴性酶[131]。其在生物應激反應下大量表達,為生物提供GABA,滿足應激下植物的生存需要[4,42,132]。同時GAD也在生物中存在常態(tài)表達[22],以滿足生物對碳氮平衡、氨基酸支路和氧化物等的調(diào)控需求。GAD在植物不同組織中的表達水平不同,便于靈活調(diào)控[41]。而在動物中存在一個生物體總GABA濃度循環(huán)[22]。植物受精過程中存在GAD表達濃度梯度依賴的受精方式[133]。 2.1GAD的結(jié)構(gòu) GAD在微生物和高等生物基因組中通常存在多個GAD編碼基因[134-135]。細菌GAD蛋白一般由460~475個氨基酸殘基組成[136]。GABA在中性條件下僅存于細胞質(zhì)中,而酸性條件下分布于膜上[131]。GAD由3個二聚體組成,分為2層,每層含有3個亞基[137]。以大腸桿菌為例(圖2),其N端的1~57個殘基對二聚體形成和穩(wěn)定起作用,58~346殘基組成大結(jié)構(gòu)域,由8個α螺旋包圍7個β片層的結(jié)構(gòu)域組成,347~466殘基形成小結(jié)構(gòu)域,由4個反向平行的β片層和3個α螺旋組成[137],其活性位點300~313的殘基在酸性環(huán)境下向活性中心移動,在PLP的幫助下使得活性中心收緊。而C末端16個殘基452~466在中性條件下插入活性中心,而酸性條件下使得活性中心暴露出來提高表達[131,138]。動物GAD結(jié)構(gòu)與微生物類似,而植物GAD其碳末端含有一個Ca/鈣調(diào)結(jié)構(gòu)域,用于Ca2+調(diào)控[4,41-42,139]。 擬南芥與大腸桿菌GAD晶體結(jié)構(gòu)相比,在4個暴露的區(qū)域112~117、160~163、267~273、381~385以及β發(fā)夾結(jié)構(gòu)存在差異(圖3)。大腸桿菌GAD酶β發(fā)夾結(jié)構(gòu)允許底物在低pH進入活性位點,中性條件下β發(fā)夾結(jié)構(gòu)會延伸至活性位點附近[140]。在短乳桿菌(CGMCC1306)中 ,GAD的Y308-E312在入口處呈柔性狀態(tài)[141]。郁凱[142]也發(fā)現(xiàn)由Phe65和Thr215構(gòu)成的底物入口是一個疏水區(qū)域,其形狀和大小決定了底物分子進入活性中心時的正確取向。輔酶PLP對活性位點很重要,PLP具有誘導活性中心構(gòu)像變化、穩(wěn)定蛋白結(jié)構(gòu)以及促進亞基組裝成大分子的功能[138]。而短乳桿菌(CGMCC1306) Ser126、Ser127、Cys168、Ile211、Ser276、His278、Ser321和PLP輔因子在酶的活性中起作用[141]。PLP可以與Lys276形成亞胺鍵,結(jié)合后其吡啶環(huán)位于Gln63和Ala246之間。Lys276與PLP醛基的N形成鹽橋即希夫堿起作用[136,143-144]。GAD存在高度保守的PLP結(jié)合位點 (-RxxxxxxPHKMMxVxLxC-)[139]。PLP吡啶環(huán)通常與Tyr、Trp、Phe、Gln殘基相互作用,PLP磷酸基團與酶的色氨酸和丙氨酸作用[131,136]。Thr64、Phe65、Asn85、Gln166、Phe320、Arg42對催化至關(guān)重要[141]。Arg422對Phe63側(cè)鏈吸引使得α-脫羧不受干擾[136]。而gadB Asn83、Asp86、Thr62、Phe63參與底物與遠端羧基的結(jié)合[140]。gadB活性位點包括Phe63、Ser128、Thr212、Asp243、Ala245、Asp86、His275、Lys276、Arg422,而Cys64、Thr63、Asp86、Asn83等殘基形成的氫鏈有助于底物的識別[131,137]。 注:紅色.112~117氨基酸殘基,藍色.160~163氨基酸殘基,黃色.267~273氨基酸殘基,紫色.381~385氨基酸殘基,彩虹色.β發(fā)夾結(jié)構(gòu) 2.2GAD表達的影響因素及其定點突變的研究 在微生物中,GAD表達主要受pH的影響[4,42,131]。而植物中GAD表達同時受Ca2+調(diào)控和pH調(diào)控的影響[4,42,74]。動物中則通過受體和pH調(diào)控[4,22,42,52]。GAD表達也受多種因素制約如氮壓力、過氧化物中間體、底物水平、GABA的反饋抑制調(diào)節(jié)等。同時其活性也受乙酸等化合物抑制[131]。 近年來,為了解析GAD結(jié)構(gòu)和功能,研究者在GAD的定點突變、酶學特性改善研究方面取得了突破。研究表明,GAD His465對于限定酶的酸性pH適應范圍發(fā)揮重要作用,提高pH時,酶會解聚?;谶@個原理,畢金麗等[145]設(shè)計了包含His465在內(nèi)的6個氨基酸缺失突變,在中性條件下,GAD的表達量上升,且防止了酶的解聚。也有研究者認為其pH范圍的限制與酶在C和N端的協(xié)同性有關(guān),基于此設(shè)計了E89Q/△His465和C末端14氨基酸殘基的突變體,使GAD在中性條件下活性得到了提高[146]。而林玲[147]研究表明,D88突變體降低了酶活性,推測Asp88是質(zhì)子供體。利用定點突變設(shè)計的S307N突變體,成功地改變了β發(fā)夾結(jié)構(gòu)和酶pH適應性,使得酶活性在中性條件下得到了大幅提高。郁凱[142]利用計算機輔助設(shè)計的突變篩選出20個候選位點,經(jīng)過復篩后得到的C379N突變體明顯提高了酶的熱穩(wěn)定性,酶的半失活溫度提高了5 ℃。田健[148]也以此法篩選出了G194P在內(nèi)的6個提高穩(wěn)定性的突變體。 3GABA的制備方法與應用 3.1GABA的制備可通過生物和化學2種方法制備GABA。化學合成是通過鄰苯二甲酰亞氨鉀在180 ℃下與γ-氯丁氰反應,得到的產(chǎn)物經(jīng)過濃硫酸回流,提純結(jié)晶而得;另一種方法經(jīng)由吡咯烷酮在氫氧化鈣和碳酸氫銨下水解開環(huán)等方法得到?;瘜W合成法由于存在使用危險溶劑和有毒物殘留的不足,不適宜在食品應用領(lǐng)域使用[149-150]。生物合成又分為植物富集和微生物發(fā)酵2種方法。植物富集可以通過植物具有的2種GABA生產(chǎn)途徑完成生產(chǎn),而微生物發(fā)酵則使用谷氨酸脫羧酶途徑發(fā)酵生產(chǎn)GABA。戴鳳燕等[151]、楊晶晶等[152]利用兩步酶法合成GABA,該方法包括發(fā)芽及均相反應2個階段, 其中發(fā)芽階段是將原料浸泡發(fā)芽; 均相反應階段即在發(fā)芽后一定條件下碾碎原料,在水相中利用釋放的酶生產(chǎn)GABA最高達3.7 mg/g。 3.2GABA的應用 目前GABA作為癲癇、帕金森以及神經(jīng)類等藥物廣泛應用于醫(yī)藥領(lǐng)域。在農(nóng)作物種植中,GABA噴灑在植物表面可增強植物耐寒、耐旱、耐堿、耐澇、耐熱能力,還可進行果實催熟。GABA產(chǎn)品AvxGro很早就用在農(nóng)業(yè)中[4]。而作為食品添加劑在東亞地區(qū)是廣泛關(guān)注的課題。日本和我國也相繼在2001和2009年分別將其作為食品級添加劑[152]。Hayisamaae等[153]認為植物乳桿菌DW12發(fā)酵的紅海藻培養(yǎng)液是一種潛在的飲品,其GABA達1 284 mg/L。日本是最早使用GABA作為食品添加劑的國家,以高GABA含量的茶類、發(fā)芽糙米作為健康食品素材[154]。Kim等[155]也發(fā)現(xiàn)短乳桿菌BH2 GABA產(chǎn)量達194 mmol/L。Seo 等[156]通過短乳桿菌877G的gad基因在大腸桿菌中異源表達,測得較高酶活,在29.57 mmol/L L-谷氨酸鈉中利用短乳桿菌877G和薩克氏乳桿菌795共發(fā)酵得到22.51 mmol/L GABA ,這種方法可作為GABA功能性發(fā)酵食品和乳制品強化的促進劑[157]。我國近年來同樣有許多微生物發(fā)酵生產(chǎn)GABA的嘗試。短乳桿菌NCL912是近年來的一株高產(chǎn)菌株,其GABA濃度達(1005.81±47.88) mmol/L[158]。Huang等[159]從牛奶中分離獲得短乳桿菌CGMCC1306,優(yōu)化培養(yǎng)得到最大酶活性。其后也生產(chǎn)出526.33 mmol/L GABA,以及利用酶定向進化的方法提高GABA產(chǎn)量[160-161]。龔福明等[162]利用植物乳桿菌(Lactobacillus plantarum )YM-4-3優(yōu)化,其產(chǎn)量為 15.09 mmol/L。啤酒酵母(Saccharomyces cerevisiae) MJ2的GABA產(chǎn)量最高可達7.539 g/L[163]。趙安琪[164]嘗試利用布氏乳桿菌(Lactobacillus buchneri) WPZ001 gadB基因重組菌將原本搖瓶中GABA的75.5 g/L提升到313.1 g/L。相對于高等生物中極低的GABA生理含量,微生物中發(fā)酵所得遠遠超出這個數(shù)字。微生物中GAD較窄的pH適用范圍,仍限制了GABA在工農(nóng)業(yè)生產(chǎn)中的應用范圍。因此,有必要從多角度開展工作,發(fā)掘更多的基因資源,以克服不足。而利用代謝工程生產(chǎn)GABA具有更大的生產(chǎn)潛力和更低的成本,因而具有較高的經(jīng)濟價值。 4展望 GABA作為生物體常駐的氨基酸一直廣泛并深遠地影響著我們。作為生物體應激響應中關(guān)鍵的中間體和生物體內(nèi)重要的信號傳遞者。從低等到高等生物中呈現(xiàn)從簡單到復雜的有序過程。作為植物以及人體中重要的信號分子,起著承上啟下的作用。尤其是對于高等生物中受體調(diào)節(jié)機制,是多種病理發(fā)病和治療的重要因素。隨著科技的進步,GABA作為一個媒介可以幫助了解更多的應激以及神經(jīng)的生理調(diào)節(jié)過程,更加理性和精準地利用GABA。 參考文獻 [1]ACKERMANN D,KUTSCHER F.-ber die aporrhegmen[J].Hoppe-Seyler′ s Zeitschrift für physiologische Chemie,1910,69(3/4):265-272. [2]AWAPARA J.Occurrence of free γ-aminobutyric acid in brain and its formation from L-glutamic acid[J].Tex Rep Biol Med,1950,8(4):443-447. [3]ROBERTS E,F(xiàn)RANKEL S.γ-Aminobutyric acid in brain:its formation from glutamic acid[J].J Biol Chem,1950,187:55-63. [4]SHELP B J,BOWN A W,MCLEAN M D.Metabolism and functions of γ-aminobutyric acid[J].Trends Plant Sci,1999,4(11):446-452. [5]MAJUMDAR D,GUHA S.Conformation,electrostatic potential and pharmacophoric pattern of GABA (γ-aminobutyric acid) and several GABA inhibitors[J].J Mol Struc-theochem,1988,180:125-140. [6]CHRISTENSEN H N,GREENE A A,KAKUDA D K,et al.Special transport and neurological significance of two amino acids in a configuration conventionally designated as D[J].J Exp Biol,1994,196(1):297-305. [7]RAMESH S A,TYERMAN S D,XU B,et al.GABA signalling modulates plant growth by directly regulating the activity of plant-specific anion transporters[J].Nat Commun,2015,6:1-9. [8]YOON Y E,KUPPUSAMY S,CHO K M,et al.Influence of cold stress on contents of soluble sugars,vitamin C and free amino acids including γ-aminobutyric acid (GABA) in spinach (Spinacia oleracea)[J].Food Chem,2017,215:185-192. [9]AKCAY N,BOR M,KARABUDAK T,et al.Contribution of γ amino butyric acid (GABA) to salt stress responses of Nicotiana sylvestris CMSII mutant and wild type plants[J].J Plant Physiol,2012,169(5):452-458. [10]RENAULT H,ROUSSEL V,EL AMRANI A,et al.The Arabidopsis pop2-1 mutant reveals the involvement of GABA transaminase in salt stress tolerance[J].BMC Plant Biol,2010,10(1):1-16. [11]PARK D H,MIRABELLA R,BRONSTEIN P A,et al.Mutations in γ-aminobutyric acid (GABA) transaminase genes in plants or Pseudomonas syringae reduce bacterial virulence[J].Plant J,2010,64(2):318-330. [12]ROBERTS E.γ-aminobutyric acid and nervous system function-A perspective[J].Biochem Pharmacol,1974,23(19):2637-2649. [13]DAVIES W E.The distribution of GABA transaminase-containing neurones in the cat cochlear nucleus[J].Brain Res,1975,83(1):27-33. [14]CASTANIE-CORNET M P,PENFOUND T A,SMITH D,et al.Control of acid resistance inEscherichia coli[J].J Bacteriol,1999,181(11):3525-3535. [15]SANDERS J W,LEENHOUTS K,BURGHOORN J,et al.A chloride‐inducible acid resistance mechanism in Lactococcus lactis and its regulation[J].Mol Microbiol,1998,27(2):299-310. [16]SHELP B J,BOZZO G G,TROBACHER C P,et al.Hypothesis/review:Contribution of putrescine to 4-aminobutyrate (GABA) production in response to abiotic stress[J].Plant Sci,2012,193/194:130-135. [17]ZAREI A,TROBACHER C P,SHELP B J.Arabidopsis aldehyde dehydrogenase 10 family members confer salt tolerance through putrescine-derived 4-aminobutyrate (GABA) production[J].Sci Rep,2016,6:1-11. [18]MACGREGOR K B,SHELP B J,PEIRIS S,et al.Overexpression of glutamate decarboxylase in transgenic tobacco plants deters feeding by phytophagous insect larvae[J].J Chem Ecol,2003,29(9):2177-2182. [19]BOWN A W,MACGREGOR K B ,SHELP B J.Gamma-aminobutyrate:Defense against invertebrate pests?[J].Trends Plant Sci,2006,11(9):424-427. [20]KONNO K,HIRAYAMA C,YASUI H,et al.GABA,β-alanine and glycine in the digestive juice of privet-specialist insects:Convergent adaptive traits againstplant iridoids[J].J Chem Ecol,2010,36(9):983-991. [21]XU Y,XU M Y,LI X.Modulation of γ-aminobutyric acid on painful sense in central nervous system of morphine-dependent rats[J].Neurosci Bull,2008,24(5):278-282. [22]SEN S,ROY S,BANDYOPADHYAY G,et al.γ-Aminobutyric acid is synthesized and released by the endothelium:Potential implications[J].Circ Res,2016,119(5):621-634. [23]BOUCH N,F(xiàn)ROMM H.GABA in plants:Just a metabolite?[J].Trends Plant Sci,2004,9(3):110-115. [24]MAPELLI S,BRAMBILLA I,BELLONI V,et al.Changes of free amino acids in leaf sap of trees subjected to flooding and drought stresses[J].Acta Hortic,2001,544(544):233-238. [25]HILDEBRANDT T M,NUNES NESI A,ARA U′JO W L,et al.Amino acid catabolism in plants[J].Mol Plant,2015,8(11):1563-1579. [26]BOULLAND J L,CHAUDHRY F A.Ontogenetic changes in the distribution of the vesicular GABA transporter VGAT correlate with the excitation/inhibition shift of GABA action[J].Neurochem Int,2012,61(4):506-516. [27]BUCKINGHAM S D,BIGGIN P C,SATTELLE B M,et al.Insect GABA receptors:Splicing,editing and targeting by antiparasitics and insecticides[J].Mol Pharmacol,2005,68(4):942-951. [28]DURKIN M M,GUNWALDSEN C A,BOROWSKY B,et al.An in situ hybridization study of the distribution of the GABAB2 protein mRNA in the rat CNS[J].Brain Res Mol Brain Res,1999,71(2):185-200. [29]BARNARD E A,SKOLNICK P,OLSEN R W,et al.International Union of Pharmacology.XV.Subtypes of γ-aminobutyric acid A receptors:Classification on the basis of subunit structure and receptor function[J].Pharmacol Rev,1998,50(2):291-313. [30]LUSCHER B,F(xiàn)UCHS T,KILPATRICK C L.GABAA receptor trafficking-mediated plasticity of inhibitory synapses[J].Neuron,2011,70(3):385-409. [31]SIEGHART W,SPERK G.Subunit composition,distribution and function of GABA-A receptor subtypes[J].Curr Top Med Chem,2002,2(8):795-816. [32]OLSEN R W,SIEGHART W.International Union of Pharmacology.LXX.Subtypes of γ-aminobutyric acidA receptors:Classification on the basis of subunit composition,pharmacology,and function[J].Update Pharmacol Rev,2008,60(3):243-260. [33]SIEGHART W.Allosteric modulation of GABAA receptors via multiple drug-binding sites[J].Adv Pharmacol,2015,72:53-96. [34]OLSEN R W.GABAA receptor:positive and negative allosteric modulators[J].Neuropharmacology,2018,136(Pt A):10-22. [35]RAJAGOPAL L,SONI D,MELTZER H Y.Neurosteroid pregnenolone sulfate,alone,and as augmentation of lurasidone or tandospirone,rescues phencyclidine-induced deficits in cognitive function and social interaction[J].Behav Brain Res,2018,350:31-43. [36]KφLLER K S.Structure/activity relationship of alpha-conotoxins targeting GABAB receptor[D].Tromso,Norway:Universitetet i Tromso,2011. [37]EMSON P C.GABAB receptors:Structure and function[J].Prog Brain Res,2007,160:43-57. [38]BOLTON M.Alternations of NMDA and GABAB receptor function in development:A potential animal model of schizophrenia[D].Nevada:University of Nevada,2013. [39]FILIP M,F(xiàn)RANKOWSKA M.GABA(B) receptors in drug addiction[J].Pharmacol Rep,2008,60(6):755-770. [40]STRAESSLE A,LOUP F,ARABADZISZ D,et al.Rapid and long‐term alterations of hippocampal GABAB receptors in a mouse model of temporal lobe epilepsy[J].European J Neurosci,2003,18(8):2213-2226. [41]LEE J H,KIM Y J,JEONG D Y,et al.Isolation and characterization of a Glutamate decarboxylase (GAD) gene and their differential expression in response to abiotic stresses from Panax ginseng C.A.Meyer[J].Mol Biol Rep,2010,37(7):3455-3463. [42]KINNERSLEY A M,TURANO F J.Gamma aminobutyric acid (GABA) and plant responses to stress[J].Crit Rev Plant Sci,2000,19(6):479-509. [43]GILLIHAM M,TYERMAN S D.Linking metabolism to membrane signaling:The GABA-malate connection[J].Trends Plant Sci,2016,21(4):295-301. [44]SHARMA T,DREYER I,KOCHIAN L,et al.The ALMT family of organic acid transporters in plants and their involvement in detoxification and nutrient security[J].Front Plant Sci,2016,7:1-12. [45]LIU J,ZHOU M X.The ALMT gene family performs multiple functions in plants[J].Agronomy,2018,8(2):1-18. [46]AWAPARA J,LANDUA A J,F(xiàn)UERST R,et al.Free γ-aminobutyric acid in brain[J].J Biol Chem 1950,187:35-39. [47]KRANTIS A,HARDING R K.The distribution of GABA-transaminase-dehydrogenase activity in the myenteric plexus of rat small intestine:A histochemical analysis[J].Neurosci Lett,1986,64(1):85-90. [48]ERD S L,WOLF J R.Releasable,non-neuronal GABA pool in rat stomach[J].Eur J Pharmacol,1988,156(1):165-168. [49]TRANDABURU I,KUMMER W,TRANDABURU T.The immunocytochemical detection of gamma-aminobutyric acid (GABA) in the pancreas of amphibian rana esculenta;light-and electron-microscopic observations[J].Studia Universitatis Vasile Goldis Seria Stiintele Vietii (Life Sciences Series),2010,20(1):5-11. [50]CHEN G,TROMBLEY P Q,VAN DEN POL A N.Excitatory actions of GABA in developing rat hypothalamic neurones[J].J Physiol,1996,494(2):451-464. [51]IORIO L C,BARNETT A,LEITZ F H,et al.SCH 23390,a potential benzazepine antipsychotic with unique interactions on dopaminergic systems[J].J Pharmacol Exp Ther,1983,226(2):462-468. [52]LUPINSKY D,MOQUIN L,GRATTON A.Interhemispheric regulation of the rat medial prefrontal cortical glutamate stress response:Role of local GABA-and dopamine-sensitive mechanisms[J].Psychopharmacology,2017,234(3):353-363. [53]BEHAR T N,LI Y X,TRAN H T,et al.GABA stimulates chemotaxis and chemokinesis of embryonic cortical neurons via calcium-dependent mechanisms[J].J Neurosci,1996,16(5):1808-1818. [54]LOTURCO J J,OWENS D F,HEATH M J S,et al.GABA and glutamate depolarize cortical progenitor cells and inhibit DNA synthesis[J].Neuron,1995,15(6):1287-1298. [55]HAYDAR T F,WANG F,SCHWARTZ M L,et al.Differential modulation of proliferation in the neocortical ventricular and subventricular zones[J].J Neurosci,2000,20(15):5764-5774. [56]YOGEESWARI P,PATEL S K,REDDY I V,et al.GABA derivatives for the treatment of epilepsy and neuropathic pain:A synthetic integration of GABA in 1,2,4-Triazolo-2H-one nucleus[J].Biomedicine and Aging Pathology,2012,2(2):31-40. [57]LLOYD K G,BOSSI L,MORSELLI P L,et al.Alterations of GABA-mediated synaptic transmission in human epilepsy[J].Adv Neurol,1986,44:1033-1044. [58]KOKAIA M,AEBISCHER P,ELMR E,et al.Seizure suppression in kindling epilepsy by intracerebral implants of GABA-but not by noradrenaline-releasing polymer matrices[J].Exp Brain Res,1994,79(2):385-394. [59]HIRSCH J C,AGASSANDIAN C,MERCHAN-PEREZ A,et al.Deficit of quantal release of GABA in experimental models of temporal lobe epilepsy[J].Nat Neurosci,1999,2(6):499-500. [60]BUHL E H,OTIS T S,MODY I.Zinc-induced collapse of augmented inhibition by GABA in a temporal lobe epilepsy model[J].Science,1996,271(5247):369-373. [61]CZUCZWAR S J,PATSALOS P N.The new generation of GABA enhancers.Potential in the treatment of epilepsy[J].CNS Drugs,2001,15(5):339-350. [62]TASKER J G,DUDEK F E.Electrophysiology of GABA-mediated synaptic transmission and possible roles in epilepsy[J].Neurochem Res,1991,16(3):251-262. [63]PEARL P L,SHUKLA L,THEODORE W H,et al.Epilepsy in succinic semialdehyde dehydrogenase deficiency,a disorder of GABA metabolism[J].Brain Dev,2011,33(9):796-805. [64]ESCLAPEZ M,HOUSER C R.Up-regulation of GAD65 and GAD67 in remaining hippocampal GABA neurons in a model of temporal lobe epilepsy[J].J Comp Neurol,1999,412(3):488-505. [65]OH C H,OH S H.Effects of germinated brown rice extracts with enhanced levels of GABA on cancer cell proliferation and apoptosis[J].J Med Food,2004,7(1):19-23. [66]LIN C C,CHUNG Y C,HSU C P.GABA tea extract inhibit the colony formation and invasion of colorectal cancer cells[J].MOJ Food Process Technol,2017,5(4):349-351. [67]SOLORZANO S R,IMAZ-ROSSHANDLER I,CAMACHO-ARROYO I,et al.GABA promotes gastrin-releasing peptide secretion in NE/NE-like cells:Contribution to prostate cancer progression[J].Sci Rep,2018,8(1):1-13. [68]YOUNG S Z,BORDEY A.GABAS control of stem and cancer cell proliferation in adult neural and peripheral niches[J].Physiology,2009,24(3):171-185. [69]AL-WADEI H A N,AL-WADEI M H,ULLAH M F,et al.Celecoxib and GABA cooperatively prevent the progression of pancreatic cancer in vitro and in xenograft models of stress-free and stress-exposed Mice[J].PLoS One,2012,7(8):1-11. [70]MA P J,LI T,JI F C,et al.Effect of GABA on blood pressure and blood dynamics of anesthetic rats[J].Int J Clin Exp Med,2015,8(8):14296-14302. [71]MABUNGA D F N,GONZALES E L T,KIM H J,et al.Treatment of GABA from fermented rice germ ameliorates caffeine-induced sleep disturbance in mice[J].Biomol Ther (Seoul),2015,23(3):268-274. [72]TIAN J,DANG H,KAUFMAN D L.Combining antigen-based therapy with GABA treatment synergistically prolongs survival of transplanted β-cells in diabetic NOD mice[J].PLoS One,2011,6(9):1-5. [73]ISRAEL M.Inadequate pancreatic GABA controls that explain cancer metabolism[J].Acta scientific cancer biology,2018,2:23-26. [74]SCHOLZ S S,REICHELT M,MEKONNEN D W,et al.Insect herbivory-elicited GABA accumulation in plants is a wound-induced,direct,systemic,and jasmonate-independent defense response[J].Front Plant Sci,2015,6:1-11. [75]XU L,CAI W X,XU B J.A systematic assesdment on vitamins (B2,B 12) and GABA profiles in fermented soy products marketed in China[J].J Food Process Pres,2017,41(5):e13126. [76]MIYASHITA Y,GOOD A G.Contribution of the GABA shunt to hypoxia-induced alanine accumulation in roots of Arabidopsis thaliana[J].Plant Cell Physiol,2008,49(1):92-102. [77]AGHDAM M S,F(xiàn)ARD J R.Melatonin treatment attenuates postharvest decay and maintains nutritional quality of strawberry fruits (Fragaria× anannasa cv.Selva) by enhancing GABA shunt activity[J].Food Chem,2017,221:1650-1657. [78]CARROLL A D,F(xiàn)OX G G,LAURIE S,et al.Ammonium assimilation and the role of γ-aminobutyric acid in pH homeostasis in carrot cell suspensions[J].Plant Physiol,1994,106(2):513-520. [79]KRULWICH T A,SACHS G,PADAN E.Molecular aspects of bacterial pH sensing and homeostasis[J].Nat Rev Microbiol,2011,9(5):330-343. [80]KAILA K,SAARIKOSKI J,VOIPOIO J.Mechanism of action of GABA on intracellular pH and on surface pH in crayfish muscle fibres[J].J Physiol,1990,427(1):241-260. [81]CRAWFORD L A,BOWN A W,BREITKREUZ K E,et al.The synthesis of γ-aminobutyric acid in response to treatments reducing cytosolic pH[J].Plant Physiol,1994,104(3):865-871. [82]CHEN J C,CHESLER M.Modulation of extracellular pH by glutamate and GABA in rat hippocampal slices[J].J Neurophysiol,1992,67(1):29-36. [83]KOLLENDA M C,SCARBOROUGH R M,GERBES A L.Discrimination and quantification of glomerular receptor subtypes for atrial natriuretic factor (ANF)[J].J Recept Res,1991,11(1/2/3/4):259-273. [84]王曉冬,解備濤,譚偉明,等.γ 氨基丁酸對冬小麥籽粒灌漿期耐熱性及產(chǎn)量和品質(zhì)的影響[J].麥類作物學報,2009,29(4):623-626. [85]黃娟.高溫脅迫下外源GABA對黃瓜幼苗生長的影響[J].長江蔬菜,2016(8):73-78. [86]BISWAS S,PODDAR M K.Does GABA act through dopaminergic/cholinergic interaction in the regulation of higher environmental temperature-induced change in body temperature?[J].Methods Find Exp Clin Pharmacol,1990,12(5):303-307. [87]BISWAS S,PODDAR M K.Repeated exposure to high environmental temperature changes brain regional GABA metabolism[J].Methods Find Exp Clin Pharmacol,1990,12(6):395-400. [88]YOSHIKAWA T,MIYAGAWA T.Effect of oral administration of GABA on temperature regulation in humans during rest and exercise at high ambient temperature[J].Osaka City Med J,2009,55:99-108. [89]LARCHER W,BAUER H.Ecological significance of resistance to low temperature[M]//LANGE O L,NOBEL P S,OSMOND C B,et al.Physiological plant ecology I:Responses to the physical environment.New York:Springer,1981:403-437. [90]FUJISAKI T,WAKATSUKI H,KUDOH M,et al.Irreversible impairment of inhibitory neurons and nitric oxide release in the neocortex produced by low temperature and hypoxia in vitro[J].Neurosci Res,1999,33(4):307-316. [91]BISWAS S,PODDAR M K.Effect of short-and long-term exposure to low environmental temperature on brain regional GABA metabolism[J].Neurochem Res,1990,15(8):815-820. [92]BUSTAMANTE C A,MONTI L L,GABILONDO J,et al.Differential metabolic rearrangements after cold storage are correlated with chilling injury resistance of peach fruits[J].Front Plant Sci,2016,7:1478. [93]OBATA T,F(xiàn)ERNIE A R.The use of metabolomics to dissect plant responses to abiotic stresses[J].Cell Mol Life Sci,2012,69(19):3225-3243. [94]KAPLAN F,KOPKA J,SUNG D Y,et al.Transcript and metabolite profiling during cold acclimation of Arabidopsis reveals an intricate relationship of cold‐regulated gene expression with modifications in metabolite content[J].Plant J,2007,50(6):967-981. [95]AGHDAM M S,NADERI R,JANNATIZADEH A,et al.Impact of exogenous GABA treatments on endogenous GABA metabolism in anthurium cut flowers in response to postharvest chilling temperature[J].Plant Physiol Biochem,2016,106:11-15. [96]BOUCH N,F(xiàn)AIT A,BOUCHEZ D,et al.Mitochondrial succinic-semialdehyde dehydrogenase of the γ-aminobutyrate shunt is required to restrict levels of reactive oxygen intermediates in plants[J].Proc Natl Acad Sci USA,2003,100(11):6843-6848. [97]CAO J,BARBOSA J M,SINGH N K,et al.GABA shunt mediates thermotolerance in Saccharomyces cerevisiae by reducing reactive oxygen production[J].Yeast,2013,30(4):129-144. [98]FAIT A,YELLIN A,F(xiàn)ROMM H.GABA shunt deficiencies and accumulation of reactive oxygen intermediates:Insight from Arabidopsis mutants[J].FEBS Lett,2005,579(2):415-420. [99]INKHAM C,SUEYOSHI K,OHTAKE N,et al.Effects of temperature and nitrogen sources on growth and nitrogen assimilation of Curcuma alismatifolia Gagnep[J].Thai journal of agricultural science,2011,44(3):145-153. [100]BARBOSA J M,SINGH N K,CHERRY J H,et al.Nitrate uptake and utilization is modulated by exogenous γ-aminobutyric acid in Arabidopsis thaliana seedlings[J].Plant Physiol Biochem,2010,48(6):443-450. [101]TURANO F J,F(xiàn)ANG T K.Characterization of two glutamate decarboxylase cDNA clones from Arabidopsis[J].Plant Physiol,1998,117(4):1411-1421. [102]WANG Y S,LUO Z S,MAO L C,et al.Contribution of polyamines metabolism and GABA shunt to chilling tolerance induced by nitric oxide in cold-stored banana fruit[J].Food Chem,2016,197:333-339. [103]SERRAJ R,SHELP B J,SINCLAIR T R.Accumulation of γ-aminobutyric acid in nodulated soybean in response to drought stress[J].Physiol Plantarum,1998,102(1):79-86. [104]FAES P,NIOGRET M F,MONTES E,et al.Transcriptional profiling of genes encoding GABA-transaminases in Brassica napus reveals their regulation by water deficit[J].Environ Exp Bot,2015,116:20-31. [105]FAROOQ M,WAHID A,KOBAYASHI N,et al.Plant drought stress:Effects,mechanisms and management[J].Agron Sustain Dev,2009,29(1):185-212. [106]GUO P,BAUM M,GRANDO S,et al.Differentially expressed genes between drought-tolerant and drought-sensitive barley genotypes in response to drought stress during the reproductive stage[J].J Exp Bot,2009,60(12):3531-3544. [107]KRISHNAN S,LASKOWSKI K,SHUKLA V,et al.Mitigation of drought stress damage by exogenous application of a non-protein amino acid γ-aminobutyric acid on perennial ryegrass[J].J Amer Soc Hort Sci,2013,138(5):358-366. [108]TEMPLER S E,AMMON A,PSCHEIDT D,et al.Metabolite profiling of barley flag leaves under drought and combined heat and drought stress reveals metabolic QTLs for metabolites associated with antioxidant defense[J].J Exp Bot,2017,68(7):1697-1713. [109]YONG B,XIE H,LI Z,et al.Exogenous Application of GABA improves PEG-induced drought tolerance positively associated with GABA-shunt,polyamines,and proline metabolism in white clover[J].Front Physiol,2017,8:1107. [110]REZAEI-CHIYANEH E,SEYYEDI S M,EBRAHIMIAN E,et al.Exogenous application of γ-aminobutyric acid (GABA) alleviates the effect of water deficit stress in black cumin (Nigella sativa L.)[J].Ind Crop Prod,2018,112:741-748. [111]SH H S,ABOU ZEID S T,SIAM H S,et al.Effect of waterlogging and organic matter addition on water soluble Si,pH and Eh values[J].Int J Chem Tech Res,2015,8(4):1557-1562. [112]KULKARNI S S,CHAVAN P D.Study of some aspects of anaerobic metabolism in roots of finger millet and rice plants subjected to waterlogging stress[J].Int J Bot,2013,9(2):80-85. [113]SCHMIDT S,STEWART G R.Waterlogging and fire impacts on nitrogen availability and utilization in a subtropical wet heathland (wallum)[J].Plant Cell Envi,1997,20(10):1231-1241. [114]JACKSON M B,HALL K C.Early stomatal closure in waterlogged pea plants is mediated by abscisic acid in the absence of foliar water deficits[J].Plant Cell Envi,1987,10(2):121-130. [115]SUBBARAYAN K,ROLLETSCHEK H,SENULA A,et al.Influence of oxygen deficiency and the role of specific amino acids in cryopreservation of garlic shoot tips[J].BMC Biotechnol,2015,15(1):1-9. [116]夏慶平,高洪波,李敬蕊.γ-氨基丁酸(GABA)對低氧脅迫下甜瓜幼苗光合作用和葉綠素熒光參數(shù)的影響[J].應用生態(tài)學報,2011,22(4):999-1006. [117]王春燕,李敬蕊,夏慶平,等.外源γ-氨基丁酸(GABA)對低氧脅迫下甜瓜幼苗根系GABA代謝及氨基酸含量的影響[J].應用生態(tài)學報,2014,25(7):2011-2018. [118]ZHANG X C,SHABALA S,KOUTOULIS A,et al.Waterlogging tolerance in barley is associated with faster aerenchyma formation in adventitious roots[J].Plant soil,2015,394(1/2):355-372. [119]ROCHA M,LICAUSI F,ARAUJO W L,et al.Glycolysis and the tricarboxylic acid cycle are linked by alanine aminotransferase during hypoxia induced by waterlogging of Lotus japonicus[J].Plant Physiol,2010,152(3):1501-1513. [120]JAEGER C,GESSLER A,BILLER S,et al.Differences in C metabolism of ash species and provenances as a consequence of root oxygen deprivation by waterlogging[J].J Exp Bot,2009,60(15):4335-4345. [121]SHABALA S,SHABALA L,BARCELO J,et al.Membrane transporters mediating root signalling and adaptive responses to oxygen deprivation and soil flooding[J].Plant Cell Environ,2014,37(10):2216-2233. [122]ZHANG J T,ZHANG Y,DU Y,et al.Dynamic metabonomic responses of tobacco (Nicotiana tabacum) plants to salt stress[J].J Proteome Res,2011,10(4):1904-1914. [123]XING S G,JUN Y B,HAU Z W,et al.Higher accumulation of γ-aminobutyric acid induced by salt stress through stimulating the activity of diamine oxidases in Glycine max (L.) Merr.roots[J].Plant Physiol Biochem,2007,45(8):560-566. [124]DIMLIO G^LU G,DA S Z A,BOR M,et al.The impact of GABA in harpin-elicited biotic stress responses in Nicotiana tabaccum[J].J Plant Physiol,2015,188:51-57. [125]CHEVROT R,ROSEN R,HAUDECOEUR E,et al.GABA controls the level of quorum-sensing signal in Agrobacterium tumefaciens[J].Proc Natl Acad Sci USA,2006,103(19):7460-7464. [126]WEI Z M,BEER S V.hrpL activates Erwinia amylovora hrp gene transcription and is a member of the ECF subfamily of sigma factors[J].J Bacteriol,1995,177(21):6201-6210. [127]LINDGREN P B.The role of hrp genes during plant-bacterial interactions[J].Annu Rev Phytopathol,1997,35(1):129-152. [128]KATHIRESAN A,TUNG P,CHINNAPPA C C,et al.γ-aminobutyric acid stimulates ethylene biosynthesis in sunflower[J].Plant Physiol,1997,115(1):129-135. [129]VOESENEK L A C J,VAN DER VEEN R.The role of phytohormones in plant stress:Too much or too little water[J].Acta Bot Neerl,1994,43(2):91-127. [130]KOIKE S,MATSUKURA C,TAKAYAMA M,et al.Suppression of γ-aminobutyric acid (GABA) transaminases induces prominent GABA accumulation,dwarfism and infertility in the tomato (Solanum lycopersicum L.)[J].Plant Cell Physiol,2013,54(5):793-807. [131]CAPITANI G,DE BIASE D,AURIZI C,et al.Crystal structure and functional analysis of Escherichia coli glutamate decarboxylase[J].EMBO J,2003,22(16):4027-4037. [132]ROOHINEJA S,MIRHOSSEINI H,SAARI N,et al.Evaluation of GABA,crude protein and amino acid composition from different varieties of Malaysian's brown rice[J].Aust J Crop Sci,2009,3(4):184-190. [133]YU G H,ZOU J,F(xiàn)ENG J,et al.Exogenous γ-aminobutyric acid (GABA) affects pollen tube growth via modulating putative Ca2+-permeable membrane channels and is coupled to negative regulation on glutamate decarboxylase[J].J Exp Bot,2014,65(12):3235-3248. [134]BU D F,ERLANDER M G,HITZ B C,et al.Two human glutamate decarboxylases,65-kDa GAD and 67-kDa GAD,are each encoded by a single gene[J].Proc Natl Acad Sci USA,1992,89(6):2115-2119. [135]SMITH D K,KASSAM T,SINGH B,et al.Escherichia coli has two homologous glutamate decarboxylase genes that map to distinct loci[J].J Bacteriol,1992,174(18):5820-5826. [136]SUKHAREVA B S,MAMAEVA O K.Glutamate decarboxylase:Computer studies of enzyme evolution[J].Biochemistry (Mosc),2002,67(10):1180-1188. [137]DUTYSHEV D I,DARII E L,F(xiàn)OMENKOVA N P,et al.Structure of Escherichia coli glutamate decarboxylase (gadAlpha) in complex with glutarate at 2.05 angstroms resolution[J].Acta Crystallogr D Biol Crystallogr,2005,61(3):230-235. [138]BAZHULINA N P,DARII E L,LOBACHEV V M,et al.Structure of glutamate decarboxylase from E.coli:Spectral studies[J].J Biomol Struct Dyn,2002,19(6):999-1006. [139]UENO H.Enzymatic and structural aspects on glutamate decarboxylase[J].J Mol Catal B:Enzym,2000,10(1/2/3):67-79. [140]GUT H,DOMINICI P,PILATI S,et al.A common structural basis for pH- and calmodulin-mediated regulation in plant glutamate decarboxylase[J].J Mol Biol,2009,392(2):334-351. [141]HUANG J,F(xiàn)ANG H,GAI Z C,et al.Lactobacillus brevis CGMCC 1306 glutamate decarboxylase:Crystal structure and functional analysis[J].Biochem Bioph Res Co,2018,503(3):1703-1709. [142]郁凱.以計算機輔助分子設(shè)計方法改造谷氨酸脫羧酶的研究[D].杭州:浙江大學,2013. [143]TRAMONTI A,JOHN R A,BOSSA F,et al.Contribution of Lys276 to the conformational flexibility of the active site of glutamate decarboxylase from Escherichia coli[J].Eur J Biochem,2002,269(20):4913-4920. [144]MARTIN D L,WU S J,MARTIN S B.Glutamate-dependent active‐site labeling of brain glutamate decarboxylase[J].J Neurochem,1990,55(2):524-532. [145]畢金麗,劉婭,王建平,等.大腸桿菌L-谷氨酸脫羧酶定點突變及其酶學性質(zhì)初步研究[J].食品工業(yè)科技,2014,35(19):162-167. [146]高翠娟.定向突變谷氨酸脫羧酶及其生物合成γ-氨基丁酸的研究[J].中國農(nóng)業(yè)科技導報,2016,18(2):59-64. [147]林玲.利用定向進化及半理性設(shè)計提高谷氨酸脫羧酶催化活性的研究[D].杭州:浙江大學,2013. [148]田健.計算機輔助分子設(shè)計提高蛋白質(zhì)熱穩(wěn)定性的研究[D].北京:中國農(nóng)業(yè)科學院,2011. [149]梁恒宇,鄧立康,林海龍,等.新資源食品--γ-氨基丁酸(GABA)的研究進展[J].食品研究與開發(fā),2013,34(15):119-123. [150]γ-氨基丁酸(GABA)在食品工業(yè)中的應用研究[J].飲料工業(yè),2012,15(1):11-14. [151]戴鳳燕,繆冶煉,陳介余,等.兩步酶法生產(chǎn)γ-氨基丁酸的研究[J].中國食品學報,2012,12(2):46-52. [152]楊晶晶,劉英,崔秀明,等.高效液相色譜法測定三七地上部分γ-氨基丁酸的含量[J].中國中藥雜志,2014,39(4):606-609. [153]HAYISAMAAE W,KANTACHOTE D,BHONGSUWAN D,et al.A potential synbiotic beverage from fermented red seaweed (Gracilaria fisheri) using Lactoba cillus plantarum DW12[J].Int Food Res J,2014,21(5):1789-1796. [154]宋偉,馬霞,張柏林. γ-氨基丁酸的生理功效及其在乳品中的強化途徑[J].乳業(yè)科學與技術(shù),2008,31(6):297-302. [155]KIM S H,SHIN B H,KIM Y H,et al.Cloning and expression of a full-length glutamate decarboxylase gene from Lactobacillus brevis BH2[J].Biotechnol Bioproc E,2007,12(6):707-712. [156]SEO M J,NAM Y D,LEE S Y,et al.Expression and characterization of a glutamate decarboxylase from Lactobacillus brevis 877g producing γ-aminobutyric acid[J].B Chem Soc Jpn,2013,77(4):853-856. [157]SEO MJ,NAM YD,PARK SL,et al.γ-aminobutyric acid production in skim milk co-fermented with Lactobacillus brevis 877G and Lactobacillus sakei 795[J].Food Sci Bio Technol,2013,22(3):751-755. [158]LI H X,QIU T,HUANG G D,et al.Production of gamma-aminobutyric acid by Lactobacillus brevis NCL912 using fed-batch fermentation[J].Microb Cell Fact,2010,9(1):1-9. [159]HUANG J,MEI L H,SHENG Q,et al.Purification and characterization of glutamate decarboxylase of Lactobacillus brevis CGMCC 1306 isolated from fresh milk[J].Chinese J Chem Eng,2007,15(2):157-161. [160]PENG C L,HUANG J,HU S,et al.A two-stage ph and temperature control with substrate feeding strategy for production of gamma-aminobutyric acid by Lactobacillus brevis CGMCC 1306[J].Chinese J Chem Eng,2013:1190-1194. [161]LIN L,HU S,YU K,et al.Enhancing the activity of glutamate decarboxylase from Lactobacillus brevis by directed evolution[J].Chinese J Chem Eng,2014,22(11/12):1322-1327. [162]龔福明,柳陳堅 李曉然.植物乳桿菌 ym-4-3 發(fā)酵合成γ-氨基丁酸的條件優(yōu)化[J].昆明理工大學學報(自然科學版),2017,42(4): 63-72. [163]李杰.生物合成γ-氨基丁酸酵母菌谷氨酸脫羧酶基因的克隆及表達[D].金華:浙江師范大學,2009. [164]趙安琪.微生物發(fā)酵法高效生產(chǎn) γ-氨基丁酸的研究[D].無錫:江南大學,2017. |
|