原始教程鏈接:https://github.com/iMetaScience/iMetaPlot/tree/main/221108NMDS 寫在前面 非度量多維尺度分析(Non-metric multidimensional scaling, NMDS),是基于相異矩陣或距離矩陣進行排序分析的間接梯度分析方法,在微生物組研究中可以用來展示群落beta多樣性。本期我們挑選2022年2月24日刊登在iMeta上的Linking soil fungi to bacterial community assembly in arid ecosystems - iMeta:西農(nóng)韋革宏團隊焦碩等-土壤真菌驅(qū)動細菌群落的構(gòu)建,選擇文章的Figure 6C進行復現(xiàn),基于vegan包,講解和探討和NMDS分析和可視化的方法,先上原圖: 接下來,我們將通過詳盡的代碼逐步拆解原圖,最終實現(xiàn)對原圖的復現(xiàn)。代碼編寫及注釋:農(nóng)心生信工作室。 安裝核心R包vegan以及ggplot2,并載入所有R包。 if (!require("vegan")) install.packages('vegan') if (!require("ggplot2")) install.packages('ggplot2') # 加載包 library(vegan) library(ggplot2)
由于缺少原始數(shù)據(jù),因此本例使用vegan包自帶的dune數(shù)據(jù)集進行測試。dune包含了20個樣品,每個樣品有30個物種豐度,每一行是一個樣品,每一列是一個物種。 # 載入dune數(shù)據(jù)集 data(dune) #載入dune包含分組信息等的元數(shù)據(jù)(即metadata),分組信息為Management列 data(dune.env)
獲取數(shù)據(jù)后,即可利用vegan包進行NMDS分析。 #計算bray_curtis距離 distance <- vegdist(dune, method = 'bray') #NMDS排序分析,k = 2預設兩個排序軸 nmds <- metaMDS(distance, k = 2) #> Run 0 stress 0.1192678 #> Run 1 stress 0.1192678 #> ... Procrustes: rmse 4.495733e-05 max resid 0.0001375161 #> ... Similar to previous best #> Run 2 stress 0.1183186 #> ... New best solution #> ... Procrustes: rmse 0.02026799 max resid 0.06495211 #> Run 3 stress 0.1183186 #> ... New best solution #> ... Procrustes: rmse 1.832694e-05 max resid 5.57604e-05 #> ... Similar to previous best #> Run 4 stress 0.1809577 #> Run 5 stress 0.1192678 #> Run 6 stress 0.1183186 #> ... New best solution #> ... Procrustes: rmse 5.582524e-06 max resid 1.803473e-05 #> ... Similar to previous best #> Run 7 stress 0.1192678 #> Run 8 stress 0.1192678 #> Run 9 stress 0.1192678 #> Run 10 stress 0.1192678 #> Run 11 stress 0.1192679 #> Run 12 stress 0.1808911 #> Run 13 stress 0.1192678 #> Run 14 stress 0.1183186 #> ... Procrustes: rmse 5.943311e-06 max resid 1.823899e-05 #> ... Similar to previous best #> Run 15 stress 0.1886532 #> Run 16 stress 0.1192678 #> Run 17 stress 0.1183186 #> ... Procrustes: rmse 3.001088e-06 max resid 9.607646e-06 #> ... Similar to previous best #> Run 18 stress 0.1192679 #> Run 19 stress 0.1808911 #> Run 20 stress 0.1183186 #> ... Procrustes: rmse 2.027412e-05 max resid 6.520856e-05 #> ... Similar to previous best #> *** Best solution repeated 4 times #查看結(jié)果 #summary(nmds)
#獲得應力值(stress) stress <- nmds$stress #將繪圖數(shù)據(jù)轉(zhuǎn)化為數(shù)據(jù)框 df <- as.data.frame(nmds$points) #與分組數(shù)據(jù)合并 df <- cbind(df, dune.env)
p <- ggplot(df, aes(MDS1, MDS2))+ geom_point(aes(color = Management), size = 5)
我們注意到,原圖中,每個分組被連接成不規(guī)則的多邊形并用不同顏色表示,我們可以通過ggplot2中geom_polygon()來繪制。geom_polygon()會按照數(shù)據(jù)中出現(xiàn)的順序連接觀測值,內(nèi)部可填充顏色。 p <- ggplot(df, aes(MDS1, MDS2))+ geom_point(aes(color = Management), size = 5)+ geom_polygon(aes(x = MDS1, y = MDS2, fill = Management, group = Management, color = Management), alpha = 0.3, linetype = "longdash", linewidth = 1.5) #通過按順序連接觀測值繪制多邊形
由于geom_polygon()會按照數(shù)據(jù)中出現(xiàn)的順序連接觀測值,因此如果我們按照df自身順序來繪制多邊形,多邊形會非常奇怪,沒法代表不同分組。因此,我們需要預先處理df的順序,按合理的順序連接觀測值。 df <- df[order(df$Management), ]#先按分組排序 df$Order <- c(2, 1, 3, 1, 2, 3, 4, 5, 3, 5, 1, 6, 2, 4, 1, 2, 6, 3, 5, 4)#添加一列Order,給每個分組內(nèi)觀測點的手動排序 df <- df[order(df$Management, df$Order), ]#按分組和Order排序 p <- ggplot(df, aes(MDS1, MDS2))+ geom_point(aes(color = Management), size = 5)+ geom_polygon(aes(x = MDS1, y = MDS2, fill = Management, group = Management, color = Management), alpha = 0.3, linetype = "longdash", linewidth = 1.5)
分別進行Anosim分析(Analysis of similarities)和PERMANOVA(即adonis)檢驗分析。 #設置隨機種子 set.seed(123) #基于bray-curtis距離進行PERMANOVA分析 adonis <- adonis2(dune ~ Management, data = dune.env, permutations = 999, method = "bray") #基于bray-curtis距離進行anosim分析 anosim = anosim(dune, dune.env$Management, permutations = 999, distance = "bray")
# 應力值stress,Adonis R2與顯著性,Anosim R與顯著性 stress_text <- paste("Stress =", round(stress, 4)) adonis_text <- paste(paste("Adonis =", round(adonis$R2, 2)), "**")[1] anosim_text <- paste(paste("Anosim =", round(anosim$statistic, 2)), "**")
p <- ggplot(df, aes(MDS1, MDS2))+ geom_point(aes(color = Management), size = 5)+ geom_polygon(aes(x = MDS1, y = MDS2, fill = Management, group = Management, color = Management), alpha = 0.3, linetype = "longdash", linewidth = 1.5)+ theme(plot.margin = unit(rep(1, 4), 'lines'), panel.border = element_rect(fill = NA, color = "black", size = 0.5, linetype = "solid"), panel.grid = element_blank(), panel.background = element_rect(fill = 'white'))+ guides(color = "none", fill = "none")+ ggtitle(paste(paste(stress_text, adonis_text), anosim_text))
if (!require("vegan")) install.packages('vegan') if (!require("ggplot2")) install.packages('ggplot2') # 加載包 library(vegan) library(ggplot2) # 載入dune數(shù)據(jù)集 data(dune) #載入dune包含分組信息等的元數(shù)據(jù)(即metadata),分組信息為Management列 data(dune.env) #計算bray_curtis距離 distance <- vegdist(dune, method = 'bray') #NMDS排序分析,k = 2預設兩個排序軸 nmds <- metaMDS(distance, k = 2) #> Run 0 stress 0.1192678 #> Run 1 stress 0.1192678 #> ... Procrustes: rmse 1.505128e-05 max resid 4.673581e-05 #> ... Similar to previous best #> Run 2 stress 0.1192678 #> ... Procrustes: rmse 3.715749e-06 max resid 1.009651e-05 #> ... Similar to previous best #> Run 3 stress 0.1889642 #> Run 4 stress 0.1192679 #> ... Procrustes: rmse 0.0001542849 max resid 0.0004702712 #> ... Similar to previous best #> Run 5 stress 0.1886532 #> Run 6 stress 0.2341212 #> Run 7 stress 0.1192678 #> ... Procrustes: rmse 1.328909e-05 max resid 4.273575e-05 #> ... Similar to previous best #> Run 8 stress 0.1886532 #> Run 9 stress 0.1192678 #> ... Procrustes: rmse 1.903819e-05 max resid 5.828243e-05 #> ... Similar to previous best #> Run 10 stress 0.1192678 #> ... Procrustes: rmse 6.358457e-06 max resid 1.687026e-05 #> ... Similar to previous best #> Run 11 stress 0.119268 #> ... Procrustes: rmse 5.501506e-05 max resid 0.0001605112 #> ... Similar to previous best #> Run 12 stress 0.1192678 #> ... New best solution #> ... Procrustes: rmse 5.074111e-06 max resid 1.393603e-05 #> ... Similar to previous best #> Run 13 stress 0.1192678 #> ... Procrustes: rmse 3.160318e-05 max resid 9.85043e-05 #> ... Similar to previous best #> Run 14 stress 0.1886532 #> Run 15 stress 0.2003486 #> Run 16 stress 0.2035424 #> Run 17 stress 0.1192678 #> ... Procrustes: rmse 2.440829e-05 max resid 7.079487e-05 #> ... Similar to previous best #> Run 18 stress 0.1183186 #> ... New best solution #> ... Procrustes: rmse 0.02027171 max resid 0.06497302 #> Run 19 stress 0.1183186 #> ... New best solution #> ... Procrustes: rmse 3.78469e-06 max resid 9.699447e-06 #> ... Similar to previous best #> Run 20 stress 0.1192678 #> *** Best solution repeated 1 times #查看結(jié)果 #summary(nmds) #獲得應力值(stress) stress <- nmds$stress #將繪圖數(shù)據(jù)轉(zhuǎn)化為數(shù)據(jù)框 df <- as.data.frame(nmds$points) #與分組數(shù)據(jù)合并 df <- cbind(df, dune.env) df <- df[order(df$Management), ]#先按分組排序 df$Order <- c(2, 1, 3, 1, 2, 3, 4, 5, 3, 5, 1, 6, 2, 4, 1, 2, 6, 3, 5, 4)#添加一列Order,給每個分組內(nèi)觀測點的手動排序 df <- df[order(df$Management, df$Order), ]#按分組和Order排序 #設置隨機種子 set.seed(123) #基于bray-curtis距離進行PERMANOVA分析 adonis <- adonis2(dune ~ Management, data = dune.env, permutations = 999, method = "bray") #基于bray-curtis距離進行anosim分析 anosim = anosim(dune, dune.env$Management, permutations = 999, distance = "bray") # 應力值stress,Adonis R2與顯著性,Anosim R與顯著性 stress_text <- paste("Stress =", round(stress, 4)) adonis_text <- paste(paste("Adonis =", round(adonis$R2, 2)), "**")[1] anosim_text <- paste(paste("Anosim =", round(anosim$statistic, 2)), "**") p <- ggplot(df, aes(MDS1, MDS2))+ geom_point(aes(color = Management), size = 5)+ geom_polygon(aes(x = MDS1, y = MDS2, fill = Management, group = Management, color = Management), alpha = 0.3, linetype = "longdash", linewidth = 1.5)+ theme(plot.margin = unit(rep(1, 4), 'lines'), panel.border = element_rect(fill = NA, color = "black", size = 0.5, linetype = "solid"), panel.grid = element_blank(), panel.background = element_rect(fill = 'white'))+ guides(color = "none", fill = "none")+ ggtitle(paste(paste(stress_text, adonis_text), anosim_text))
ggsave("Figure6C.pdf", p, height = 5.69, width = 7.42)
|