韓貝 孫思敏 孫偉男 楊細(xì)燕* 張獻(xiàn)龍 華中農(nóng)業(yè)大學(xué)作物遺傳改良國(guó)家重點(diǎn)實(shí)驗(yàn)室,湖北武漢 430070 摘要 Abstract 在體細(xì)胞胚胎發(fā)生過程中,通過不同激素的配合使用可以有效調(diào)控體細(xì)胞胚胎發(fā)生的各個(gè)發(fā)育階段。比如,通過調(diào)節(jié)生長(zhǎng)素(auxin)與細(xì)胞分裂素(cytokinin,CTK)比率促進(jìn)脫分化和愈傷增殖、通過添加低濃度的乙烯(ethylene)促進(jìn)體細(xì)胞胚胎發(fā)生、通過赤霉素(gibberellins,GAs)調(diào)控胚性培養(yǎng)物到球形胚的轉(zhuǎn)化、通過添加脫落酸(abscisic acid,ABA)來提高體細(xì)胞胚的質(zhì)量等。外源激素對(duì)體細(xì)胞胚胎的作用主要是通過胞外或胞內(nèi)的激素受體將外界刺激信號(hào)轉(zhuǎn)到核內(nèi),從而調(diào)控基因的表達(dá),啟動(dòng)發(fā)育程序。 1.1 生長(zhǎng)素信號(hào)傳導(dǎo)及體細(xì)胞胚胎發(fā)生 圖1 生長(zhǎng)素信號(hào)傳導(dǎo)及體細(xì)胞胚胎發(fā)生 Fig. 1 Auxin signaling and somatic embryogenesis 1.2 細(xì)胞分裂素信號(hào)與愈傷組織的增殖 1.3 乙烯信號(hào)與體細(xì)胞胚胎發(fā)生 理論上所有離體植物細(xì)胞在合適的外界環(huán)境下均可表現(xiàn)全能性。外界環(huán)境因素(特別是逆境因素)是體細(xì)胞胚胎發(fā)生的重要影響因素。逆境因子(包括機(jī)械損傷)在體細(xì)胞胚胎發(fā)生的幾個(gè)主要階段都起著重要的作用,很多研究者都將逆境因子的調(diào)控作為優(yōu)化體細(xì)胞胚胎發(fā)生體系的重要手段。在現(xiàn)有的誘導(dǎo)愈傷組織體系中,培養(yǎng)基多采用MS培養(yǎng)基,相對(duì)于維持植株正常生長(zhǎng)或萌發(fā)胚生根成苗的低糖、低鹽、低滲的SH培養(yǎng)基及1/2MS培養(yǎng)基來說,MS培養(yǎng)基無機(jī)鹽含量較高,微量元素種類較全,濃度也較高。另外,很多物種,包括胡蘿卜、苜蓿、煙草等,均有通過利用逆境處理來促進(jìn)體細(xì)胞胚胎形成及發(fā)育的研究,涉及到的逆境因素也多種多樣,主要有ABA處理、饑餓處理、滲透脅迫、高溫處理等[14-15]。 圖2 機(jī)械損傷通過調(diào)節(jié)因子WINs調(diào)控愈傷組織形成 Fig. 2 Mechanical damage regulates callus formation through the regulatory factor WINs 雖然體細(xì)胞胚胎發(fā)生過程受諸多外界環(huán)境因素的影響,但歸根結(jié)底是在各種因素的作用下,體細(xì)胞中某些特異的基因啟動(dòng)表達(dá),從而使體細(xì)胞脫分化并再分化轉(zhuǎn)變?yōu)榕咝约?xì)胞。許多研究人員致力于解析體細(xì)胞胚胎發(fā)生過程的相關(guān)基因,目前已鑒定和克隆了大量與體細(xì)胞胚胎發(fā)生相關(guān)的轉(zhuǎn)錄因子基因,其中許多參與調(diào)節(jié)合子胚發(fā)生、分生組織分化和維持的轉(zhuǎn)錄因子都在體細(xì)胞胚胎發(fā)生過程中起著重要用。 3.1 核因子Y (nuclear factor Y, NF-Y) 3.2 B3-結(jié)構(gòu)域轉(zhuǎn)錄因子 3.3 AP2/ERF結(jié)構(gòu)域蛋白 3.4 同源異形域轉(zhuǎn)錄因子 4.1 類受體激酶與體細(xì)胞胚胎發(fā)生 4.2 鈣信號(hào)與體細(xì)胞胚胎發(fā)生 5.1 阿拉伯半乳糖蛋白 5.2 脂質(zhì)轉(zhuǎn)運(yùn)蛋白 6.1 DNA甲基化 6.2 組蛋白甲基化 組蛋白甲基化由組蛋白甲基轉(zhuǎn)移酶完成的。擬南芥中,組蛋白甲基轉(zhuǎn)移酶PRC2通過H3K27me3來抑制相關(guān)基因的表達(dá),從而促進(jìn)細(xì)胞分化,反之則引起細(xì)胞脫分化,誘導(dǎo)體細(xì)胞胚胎發(fā)生[66]。在擬南芥中PRC2 (polycomb repressive complex 2)基因(CURLY LEAF,CLF和SWINGER,SWN)或(VERNALIZATION 2,VRN2和EMBRYONIC FLOWER 2,EMF2)雙突變體在莖尖脫分化形成愈傷組織,間接導(dǎo)致體細(xì)胞胚胎發(fā)生并形成異位根[67],并且與野生型相比,PRC2的突變體在營(yíng)養(yǎng)組織中顯示出更高的體細(xì)胞胚胎誘導(dǎo)能力[68]。大部分胚性相關(guān)基因LEC1、LEC2、AGL15和BBM以及分生組織調(diào)節(jié)因子STM、WUS和WOX5等基因的染色質(zhì)區(qū)域都含有H3K27me3等甲基化位點(diǎn)[69]。而PRC1和PRC2與胚胎發(fā)生轉(zhuǎn)錄抑制因子VAL1和VAL2等互作,并通過表觀修飾抑制胚胎發(fā)生相關(guān)靶標(biāo)基因的表達(dá)從而抑制愈傷組織的形成和體細(xì)胞胚胎發(fā)生。除了H3K27me3在體細(xì)胞胚胎發(fā)生發(fā)揮功能外,在擬南芥還發(fā)現(xiàn)賴氨酸特異性去甲基酶LDL3可以在愈傷組織形成過程中特異性消除H3K4me2,進(jìn)一步使愈傷組織具有芽分化的能力[70]。 6.3 組蛋白去乙?;?/span> 6.4 miRNA的調(diào)控作用 本研究由國(guó)家重點(diǎn)研發(fā)計(jì)劃(2018YFD1000907)項(xiàng)目資助。 *通信作者: 楊細(xì)燕, E-mail: yxy@mail.hzau.edu.cn 第一作者聯(lián)系方式: E-mail: bhan_z@163.com 參考文獻(xiàn) [1] Yang X Y, Zhang X L, Yuan D J, Jin F Y, Zhang Y C, Xu J. Transcript profiling reveals complex auxin signalling pathway and transcription regulation involved in dedifferentiation and redifferentiation during somatic embryogenesis in cotton. BMC Plant Biol,2012, 12: 110. [2] Lee H W, Kim N Y, Lee D J, Kim J. LBD18/ASL20 regulates lateral root formation in combination with LBD16/ASL18 downstream of ARF7 and ARF19 in Arabidopsis. Plant Physiol, 2009, 151: 1377–1389. [3] Fan M Z, Xu C Y, Xu K, Hu Y X. LATERAL ORGAN BOUNDARIES DOMAIN transcription factors direct callus formation in Arabidopsis regeneration. Cell Res, 2012, 22: 1169–1180. [4] Lee K, Park O-S, Seo P J. JMJ30-mediated demethylation of H3K9me3 drives tissue identity changes to promote callus formation in Arabidopsis. Plant J, 2018, 95: 961–975. [5] Horstman A, Li M, Heidmann I, Weemen M, Chen B, Muino J M, Angenent G C, Boutilier K. The BABY BOOM transcription factor activates the LEC1-ABI3-FUS3-LEC2 network to induce somatic embryogenesis. Plant Physiol, 2017, 175: 848–857. [6] Mendez-Hernandez H A, Ledezma-Rodriguez M, Avilez-Montalvo R N, Juarez-Gomez Y L, Skeete A, Avilez-Montalvo J, De-la-Pena C, Loyola-Vargas V M. Signaling overview of plant somatic embryogenesis. Front Plant Sci, 2019, 10: 77. [7] Skoog F, Miller C O. Chemical regulation of growth and organ formation in plant tissues cultured in vitro. Symp Soc Exp Biol, 1957, 11: 118–130. [8] Sakai H, Honma T, Aoyama T, Sato S, Kato T, Tabata S, Oka A. ARR1, a transcription factor for genes immediately responsive to cytokinins. Science, 2001, 294: 1519–1521. [9] Su Y H, Liu Y B, Bai B, Zhang X S. Establishment of embryonic shoot-root axis is involved in auxin and cytokinin response during Arabidopsis somatic embryogenesis. Front Plant Sci, 2015, 5: 792. [10] Neves M, Correia S, Cavaleiro C, Canhoto J. Modulation of organogenesis and somatic embryogenesis by ethylene: an overview. Plants (Basel), 2021, 10: 1208. [11] Chatfield S P, Raizada M N. Ethylene and shoot regeneration: hookless1 modulates de novo shoot organogenesis in Arabidopsis thaliana. Plant Cell Rep, 2008, 27: 655–666. [12] Zheng Q L, Zheng Y M, Perry S E. AGAMOUS-Like15 Promotes somatic embryogenesis in Arabidopsis and soybean in part by the control of ethylene biosynthesis and response. Plant Physiol, 2013, 161: 2113–2127. [13] Wang L C, Liu N, Wang T Y, Li J Y, Wen T W, Yang X Y, Lindsey K, Zhang X L. The GhmiR157a-GhSPL10 regulatory module controls initial cellular dedifferentiation and callus proliferation in cotton by modulating ethylene-mediated flavonoid biosynthesis. J Exp Bot, 2018, 69: 1081–1093. [14] Langhansova L, Konradova H, Vanek T. Polyethylene glycol and abscisic acid improve maturation and regeneration of Panax ginseng somatic embryos. Plant Cell Rep, 2004, 22: 725–730. [15] Stasolla C, Yeung E C. Recent advances in conifer somatic embryogenesis: improving somatic embryo quality. Plant Cell Tiss Organ Cult, 2003, 74: 15–35. [16] Marhava P, Hoermayer L, Yoshida S, Marhavy P, Benkova E, Friml J. Re-activation of stem cell pathways for pattern restoration in plant wound healing. Cell, 2019, 177: 957–969. [17] Iwase A, Harashima H, Ikeuchi M, Rymen B, Ohnuma M, Komaki S, Morohashi K, Kurata T, Nakata M, Ohme-Takagi M, Grotewold E, Sugimoto K. WIND1 promotes shoot regeneration through transcriptional activation of enhancer of SHOOT REGENERATION1 in Arabidopsis. Plant Cell, 2017, 29: 54–69. [18] Ikeuchi M, Favero D S, Sakamoto Y, Iwase A, Coleman D, Rymen B, Sugimoto K. Molecular mechanisms of plant regeneration. Annu Rev Plant Biol, 2019, 70: 377–406. [19] Ikeuchi M, Iwase A, Rymen B, Lambolez A, Kojima M, Takebayashi Y, Heyman J, Watanabe S, Seo M, de Veylder L, Sakakibara H, Sugimoto K. Wounding triggers callus formation via dynamic hormonal and transcriptional changes. Plant Physiol, 2017, 175: 1158–1174. [20] Bucher P, Trifonov E N. CCAAT box revisited: bidirectionality, location and context. J Biomol Struct Dyn, 1988, 5: 1231–1236. [21] Pelletier J M, Kwong R W, Park S, Le B H, Baden R, Cagliari A, Hashimoto M, Munoz M D, Fischer R L, Goldberg R B, Harada J J. LEC1 sequentially regulates the transcription of genes involved in diverse developmental processes during seed development. Proc Natl Acad Sci USA, 2017, 114: E6710–E6719. [22] Kwong R W, Bui A Q, Lee H, Kwong L W, Fischer R L, Goldberg R B, Harada J J. LEAFY COTYLEDON1-LIKE defines a class of regulators essential for embryo development. Plant Cell, 2003, 15: 5–18. [23] Lotan T, Ohto M, Yee K M, West M A L, Lo R, Kwong R W, Yamagishi K, Fischer R L, Goldberg R B, Harada J J. Arabidopsis LEAFY COTYLEDON1 is sufficient to induce embryo development in vegetative cells. Cell, 1998, 93: 1195–1205. [24] Orlowska A, Igielski R, Lagowska K, Kepczynska E. Identification of LEC1, L1L and Polycomb Repressive Complex 2 genes and their expression during the induction phase of Medicago truncatula Gaertn. somatic embryogenesis. Plant Cell Tiss Organ Cult, 2017, 129: 119–132. [25] Zhu S P, Wang J, Ye J L, Zhu A D, Guo W W, Deng X X. Isolation and characterization of LEAFY COTYLEDON 1-LIKE gene related to embryogenic competence in Citrus sinensis. Plant Cell Tiss Organ Cult,2014, 119: 1–13. [26] Le B H, Cheng C, Bui A Q, Wagmaister J A, Henry K F, Pelletier J, Kwong L, Belmonte M, Kirkbride R, Horvath S, Drews G N, Fischer R L, Okamuro J K, Harada J J, Goldberg R B. Global analysis of gene activity during Arabidopsis seed development and identification of seed-specific transcription factors. Proc Natl Acad Sci USA, 2010, 107: 8063–8070. [27] Gazzarrini S, Tsuchiya Y, Lumba S, Okamoto M, McCourt P. The transcription factor FUSCA3 controls developmental timing in Arabidopsis through the hormones gibberellin and abscisic acid. Dev Cell, 2004, 7: 373–385. [28] Brand A, Quimbaya M, Tohme J, Chavarriaga-Aguirre P. Arabidopsis LEC1 and LEC2 orthologous genes are key regulators of somatic embryogenesis in cassava. Front Plant Sci, 2019, 10: 673. [29] Stone S L, Braybrook S A, Paula S L, Kwong L W, Meuser J, Pelletier J, Hsieh T-F, Fischer R L, Goldberg R B, Harada J J. Arabidopsis LEAFY COTYLEDON2 induces maturation traits and auxin activity: Implications for somatic embryogenesis. Proc Natl Acad Sci USA, 2008, 105: 3151–3156. [30] Zhang Z Y, Zhao H, Li W, Wu J M, Zhou Z H, Zhou F, Chen H, Lin Y J. Genome-wide association study of callus induction variation to explore the callus formation mechanism of rice. J Integr Plant Biol, 2019, 61: 1134–1150. [31] Horstman A, Li M, Heidmann I, Weemen M, Chen B, Muino J M, Angenent G C, Boutilier K. The BABY BOOM transcription factor activates the LEC1-ABI3-FUS3-LEC2 network to induce somatic embryogenesis. Plant Physiol, 2017, 175: 848–857. [32] Mathew M M, Prasad K. Model systems for regeneration: Arabidopsis. Development, 2021, 148: dev195347. [33] Tsuwamoto R, Yokoi S, Takahata Y. Arabidopsis EMBRYOMAKER encoding an AP2 domain transcription factor plays a key role in developmental change from vegetative to embryonic phase. Plant Mol Biol, 2010, 73: 481–492. [34] Schoof H, Lenhard M, Haecker A, Mayer K F X, Jurgens G, Laux T. The stem cell population of Arabidopsis shoot meristems is maintained by a regulatory loop between the CLAVATA and WUSCHEL genes. Cell, 2000, 100: 635–644. [35] Zuo J R, Niu Q W, Frugis G, Chua N H. The WUSCHEL gene promotes vegetative-to-embryonic transition in Arabidopsis. Plant J, 2002, 30: 349–359. [36] Zhang T Q, Lian H, Zhou C M, Xu L, Jiao Y, Wang J W. A two-step model for de novo activation of WUSCHEL during plant shoot regeneration. Plant Cell, 2017, 29: 1073–1087. [37] Gordon S P, Chickarmane V S, Ohno C, Meyerowitz E M. Multiple feedback loops through cytokinin signaling control stem cell number within the Arabidopsis shoot meristem. Proc Natl Acad Sci USA, 2009, 106: 16529–16534. [38] Zhang Z, Tucker E, Hermann M, Laux T. A molecular framework for the embryonic initiation of shoot meristem stem cells. Dev Cell, 2017, 40: 264–277. [39] Hassani S B, Trontin J F, Raschke J, Zoglauer K, Rupps A. Constitutive overexpression of a conifer WOX2 homolog affects somatic embryo development in pinus pinaster and promotes somatic embryogenesis and organogenesis in Arabidopsis seedlings. Front Plant Sci, 2022, 13: 838421. [40] Su Y H, Zhou C, Li Y J, Yu Y, Tang L P, Zhang W J, Yao W J, Huang R, Laux T, Zhang X S. Integration of pluripotency pathways regulates stem cell maintenance in the Arabidopsis shoot meristem. Proc Natl Acad Sci USA, 2020, 117: 22561–22571. [41] Elhiti M, Tahir M, Gulden R H, Khamiss K, Stasolla C. Modulation of embryo-forming capacity in culture through the expression of Brassica genes involved in the regulation of the shoot apical meristem. J Exp Bot, 2010, 61: 4069–4085. [42] Schmidt E D L, Guzzo F, Toonen M A J, de Vries S C. A leucine-rich repeat containing receptor-like kinase marks somatic plant cells competent to form embryos. Development, 1997, 124: 2049–2062. [43] Li H Q, Cai Z P, Wang X J, Li M Z, Cui Y W, Cui N, Yang F, Zhu M S, Zhao J X, Du W B, He K, Yi J, Tax F E, Hou S W, Li J, Gou X P. SERK receptor-like kinases control division patterns of vascular precursors and ground tissue stem cells during embryo development in Arabidopsis. Mol Plant, 2019, 12: 984–1002. [44] Hecht V, Vielle-Calzada J P, Hartog M V, Schmidt E D L, Boutilier K, Grossniklaus U, de Vries S C. The Arabidopsis SOMATIC EMBRYOGENESIS RECEPTOR KINASE 1 gene is expressed in developing ovules and embryos and enhances embryogenic competence in culture. Plant Physiol, 2001, 127: 803–816. [45] Singh A, Khurana P. Ectopic expression of Triticum aestivum SERK genes (TaSERKs) control plant growth and development in Arabidopsis. Sci Rep, 2017, 7: 12368. [46] Borisjuk N, Sitailo L, Adler K, Malysheva L, Tewes A, Borisjuk L, Manteuffel R. Calreticulin expression in plant cells: developmental regulation, tissue specificity and intracellular distribution. Planta, 1998, 206: 504–514. [47] Yang X, Zhang X. Regulation of somatic embryogenesis in higher plants. Crit Rev Plant Sci, 2010, 29: 36–57. [48] Anil V S, Rao K S. Calcium-mediated signaling during sandalwood somatic embryogenesis. Role for exogenous calcium as second messenger. Plant Physiol, 2000, 123: 1301–1311. [49] Pandey G K, Grant J J, Cheong Y H, Kim B-G, Li L G, Luan S. Calcineurin-B-like protein CBL9 interacts with target kinase CIPK3 in the regulation of ABA response in seed germination. Mol Plant, 2008, 1: 238–248. [50] Letarte J, Simion E, Miner M, Kasha K J. Arabinogalactans and arabinogalactan-proteins induce embryogenesis in wheat (Triticum aestivum L.) microspore culture. Plant Cell Rep, 2006, 25: 877–877. [51] Perez-Perez Y, Carneros E, Berenguer E, Solis M T, Barany I, Pintos B, Gomez-Garay A, Risueno M C, Testillano P S. Pectin de-methylesterification and AGP increase promote cell wall remodeling and are required during somatic embryogenesis of quercus suber. Front Plant Sci, 2019, 9: 1915. [52] Kreuger M, Vanholst G J. Arabinogalactan-protein epitopes in somatic embryogenesis of Daucus carota L. Planta, 1995, 197: 135–141. [53] Makowska K, Kaluzniak M, Oleszczuk S, Zimny J, Czaplicki A, Konieczny R. Arabinogalactan proteins improve plant regeneration in barley (Hordeum vulgare L.) anther culture. Plant Cell Tiss Organ Cult, 2017, 131: 247–257. [54] Serpe M D, Nothnagel E A. Effects of yariv phenylglycosides on Rosa cell suspensions: evidence for the involvement of arabinogalactan-proteins in cell proliferation. Planta, 1994, 193: 542–550. [55] van Hengel A J, Tadesse Z, Immerzeel P, Schols H, van Kammen A, de Vries S C. N-acetylglucosamine and glucosamine-containing arabinogalactan proteins control somatic embryogenesis. Plant Physiol, 2001, 125: 1880–1890. [56] Cheng C S, Chen M N, Lai Y T, Chen T, Lin K F, Liu Y J, Lyu P C. Mutagenesis study of rice nonspecific lipid transfer protein 2 reveals residues that contribute to structure and ligand binding. Proteins, 2008, 70: 695–706. [57] Sterk P, Booij H, Schellekens G A, Vankammen A, Devries S C. Cell-specific expression of the carrot EP2 lipid transfer protein gene. Plant Cell, 1991, 3: 907–921. [58] Dodeman V L, Ducreux G, Kreis M. Zygotic embryogenesis versus somatic embryogenesis. J Exp Bot, 1997, 48: 1493–1509. [59] Zeng F C, Zhang X K, Zhu L F, Tu L L, Guo X P, Nie Y H. Isolation and characterization of genes associated to cotton somatic embryogenesis by suppression subtractive hybridization and macroarray. Plant Mol Biol, 2006, 60: 167–183. [60] Francois J, Lallemand M, Fleurat-Lessard P, Laquitaine L, Delrot S, Coutos-Thevenot P, Gomes E. Overexpression of the VvLTP1 gene interferes with somatic embryo development in grapevine. Funct Plant Biol, 2008, 35: 394–402. [61] Wojcikowska B, Wojcik A M, Gaj M D. Epigenetic regulation of auxin-induced somatic embryogenesis in plants. Int J Mol Sci, 2020, 21: 7. [62] Bravo S, Bertin A, Turner A, Sepulveda F, Jopia P, Jose Parra M, Castillo R, Hasbun R. Differences in DNA methylation, DNA structure and embryogenesis-related gene expression between embryogenic and non embryogenic lines of Pinus radiata D. don. Plant Cell Tiss Organ Cult, 2017, 130: 521–529. [63] Nic-Can G I, Lopez-Torres A, Barredo-Pool F, Wrobel K, Loyola-Vargas V M, Rojas-Herrera R, De-la-Pena C. New insights into somatic embryogenesis: LEAFY COTYLEDON1, BABY BOOM1 and WUSCHEL-RELATED HOMEOBOX4 are epigenetically regulated in Coffea canephora. PLoS One, 2013, 8: e72160. [64] Grzybkowska D, Moronczyk J, Wojcikowska B, Gaj M D. Azacitidine (5-AzaC)-treatment and mutations in DNA methylase genes affect embryogenic response and expression of the genes that are involved in somatic embryogenesis in Arabidopsis. Plant Growth Regul, 2018, 85: 243–256. [65] Shibukawa T, Yazawa K, Kikuchi A, Kamada H. Possible involvement of DNA methylation on expression regulation of carrot LEC1 gene in its 5'-upstream region. Gene, 2009, 437: 22–31. [66] Nakamura M, Batista R A, Kohler C, Hennig L. Polycomb Repressive complex 2-mediated histone modification H3K27me3 is associated with embryogenic potential in Norway spruce. J Exp Bot, 2020, 71: 6366–6378. [67] Chanvivattana Y, Bishopp A, Schubert D, Stock C, Moon Y H, Sung Z R, Goodrich J. Interaction of polycomb-group proteins controlling flowering in Arabidopsis. Development, 2004, 131: 5263–5276. [68] Mozgova I, Munoz-Viana R, Hennig L. PRC2 represses hormone-induced somatic embryogenesis in vegetative tissue of Arabidopsis thaliana. PLoS Genet, 2017, 13: e1006562. [69] Liu J, Deng S, Wang H, Ye J, Wu H-W, Sun H X, Chua N H. CURLY LEAF regulates gene sets coordinating seed size and lipid biosynthesis. Plant Physiol, 2016, 171: 424–436. [70] Ishihara H, Sugimoto K, Tarr P T, Temman H, Kadokura S, Inui Y, Sakamoto T, Sasaki T, Aida M, Suzuki T. Primed histone demethylation regulates shoot regenerative competency. Nat Commun, 2019, 10: 1786. [71] Kumar V, Thakur J K, Prasad M. Histone acetylation dynamics regulating plant development and stress responses. Cell Mol Life Sci, 2021, 78: 4467–4486. [72] Bie X M, Dong L, Li X H, Wang H, Gao X-Q, Li X G. Trichostatin a and sodium butyrate promotes plant regeneration in common wheat. Plant Signal Behav, 2020, 15: 12. [73] Tanaka M, Kikuchi A, Kamada H. The Arabidopsis histone deacetylases HDA6 and HDA19 contribute to the repression of embryonic properties after germination. Plant Physiol, 2008, 146: 149–161. [74] Wojcikowska B, Botor M, Moronczyk J, Wojcik A M, Nodzynski T, Karcz J, Gaj M D. Trichostatin a triggers an embryogenic transition in Arabidopsis explants via an auxin-related pathway. Front Plant Sci, 2018, 9: 1353. [75] Moronczyk J, Braszewska A, Wojcikowska B, Chwialkowska K, Nowak K, Wojcik A M, Kwasniewski M, Gaj M D. Insights into the histone acetylation-mediated regulation of the transcription factor genes that control the embryogenic transition in the somatic cells of Arabidopsis. Cells, 2022, 11: 863. [76] Zhou Y, Tan B, Luo M, Li Y, Liu C, Chen C, Yu C W, Yang S G, Dong S, Ruan J X, Yuan L B, Zhang Z, Zhao L M, Li C L, Chen H H, Cui Y H, Wu K Q, Huang S Z. HISTONE DEACETYLASE19 interacts with HSL1 and participates in the repression of seed maturation genes in Arabidopsis seedlings. Plant Cell, 2013, 25: 134–148. [77] Furuta K, Kubo M, Sano K, Demura T, Fukuda H, Liu Y G, Shibata D, Kakimoto T. The CKH2/PKL chromatin remodeling factor negatively regulates cytokinin responses in Arabidopsis calli. Plant Cell Physiol, 2011, 52: 618–628. [78] Yang X, Wang L, Yuan D, Lindsey K, Zhang X. Small RNA and degradome sequencing reveal complex miRNA regulation during cotton somatic embryogenesis. J Exp Bot, 2013, 64: 1521–1536. [79] Luo Y C, Zhou H, Li Y, Chen J Y, Yang J H, Chen Y Q, Qu L H. Rice embryogenic calli express a unique set of microRNAs, suggesting regulatory roles of microRNAs in plant post-embryogenic development. FEBS Lett, 2006, 580: 5111–5116. [80] Long J, Liu C, Feng M, Liu Y, Wu X, Guo W. miR156-SPL modules regulate induction of somatic embryogenesis in citrus callus. J Exp Bot, 2018, 69: 2979–2993. [81] Liu Z, Ge X, Qiu W, Long J, Jia H, Yang W, Dutt M, Wu X, Guo W. Overexpression of the CsFUS3 gene encoding a B3 transcription factor promotes somatic embryogenesis in Citrus. Plant Sci, 2018, 277: 121–131. [82] Gordon-Kamm B, Sardesai N, Arling M, Lowe K, Hoerster G, Betts S, Jones T. Using morphogenic genes to improve recovery and regeneration of transgenic plants. Plants (Basel), 2019, 8: 38. [83] Lowe K, Wu E, Wang N, Hoerster G, Hastings C, Cho M-J, Scelonge C, Lenderts B, Chamberlin M, Cushatt J, Wang L, Ryan L, Khan T, Chow-Yiu J, Hua W, Yu M, Banh J, Bao Z, Brink K, Igo E, Rudrappa B, Shamseer P M, Bruce W, Newman L, Shen B, Zheng P, Bidney D, Falco C, Register J, Zhao Z Y, Xu D, Jones T, Gordon-Kamm W. Morphogenic regulators baby boom and wuschel improve monocot transformation. Plant Cell, 2016, 28: 1998–2015. [84] Heidmann I, de Lange B, Lambalk J, Angenent G C, Boutilier K. Efficient sweet pepper transformation mediated by the BABY BOOM transcription factor. Plant Cell Rep, 2011, 30: 1107–1115. [85] Maher M F, Nasti R A, Vollbrecht M, Starker C G, Clark M D, Voytas D F. Plant gene editing through de novo induction of meristems. Nat Biotechnol, 2020, 38: 84–89. [86] Loyola-Vargas V M. The history of somatic embryogenesis. In: Loyola-Vargas V M, Ochoa-Alejo N, eds. Somatic Embryogenesis: Fundamental Aspects and Applications. Cham: Springer International Publishing, 2016. pp 11–22. 本文已在中國(guó)知網(wǎng)網(wǎng)絡(luò)首發(fā),網(wǎng)址: https://kns.cnki.net/kcms/detail/11.1809.s.20220808.1609.002.html 期刊簡(jiǎn)介 |
|