日韩黑丝制服一区视频播放|日韩欧美人妻丝袜视频在线观看|九九影院一级蜜桃|亚洲中文在线导航|青草草视频在线观看|婷婷五月色伊人网站|日本一区二区在线|国产AV一二三四区毛片|正在播放久草视频|亚洲色图精品一区

分享

美國官方機(jī)構(gòu)欽定的下一代“長壽藥”,原是老牌抗氧化劑再翻紅?

 新用戶0641yy4L 2022-07-10 發(fā)布于河南

導(dǎo)讀

前段日子,我們與大家一同盤點(diǎn)了抗氧化劑家族中的代表物質(zhì),其中,一種天然來源于微藻的類胡蘿卜素[1]引起了筆者關(guān)注,它便是號稱“抗氧化王者”的蝦青素——活性氧清除能力是生素C6000倍,輔酶Q10800倍維生素E550倍,多酚200倍花青素150倍,α-硫辛酸75倍[2]。

圖片

圖注:蝦青素分子結(jié)構(gòu)與從藻類提取制成的粉末

然而,今日蝦青素被“點(diǎn)到名”,可絕非因這一連串“晃到眩目”的漂亮數(shù)字(對于一項(xiàng)15年前發(fā)表在非核心期刊、使用初級檢測手法得到的結(jié)果,筆者持保留態(tài)度),而是在于其成為大名鼎鼎ITP計(jì)劃的“天選之子”。

作為國家官方機(jī)構(gòu)美國國家老齡化研究所,NIA)主導(dǎo)的高規(guī)格大型衰老干預(yù)項(xiàng)目,ITP計(jì)劃在抗衰領(lǐng)域可謂舉足輕重,就驗(yàn)證物質(zhì)而言,經(jīng)層層篩選后,每期最終入選的不過也就三五種。在這樣激烈的角逐下,蝦青素能脫穎而出,躋身“ITP家族”,難免惹人多看兩眼。

雖說蝦青素最終驗(yàn)證結(jié)果遲遲未出,能不能成為下一個(gè)香餑餑還乾坤未定,但近期,ITP計(jì)劃“三大掌門人”之一、Paul F. Glenn衰老生物學(xué)研究中心主任Richard A. Miller在采訪中透露:“在我們未公布的干預(yù)試驗(yàn)結(jié)果里,部分物質(zhì)的結(jié)果令人興奮,其一是蝦青素?!?/span>

圖片

圖注:Richard A. Miller教授采訪截圖

那么,在NIA正式公布驗(yàn)證結(jié)果前,我們不妨先整理下近年來蝦青素在抗衰領(lǐng)域的重要發(fā)現(xiàn),看看除了在老生常談的抗氧化上所向披靡,蝦青素還有哪些深藏不露的“御老之術(shù)”。

時(shí)光派的老讀者們對“炎性衰老”這一概念絕不會(huì)陌生。與衰老如影隨形并不斷積累的慢性炎癥,已被大量研究證實(shí)為心血管、神經(jīng)系統(tǒng)疾病以及癌癥、肌肉減少癥等多種疾病的誘發(fā)因素[3, 4]。

如何及時(shí)“摁住”炎癥肆虐的勢頭,對抗衰而言意義重大,而能夠降低機(jī)體炎癥水平(標(biāo)志物有CRP、TNF-α等)的抗炎物質(zhì)自是生逢其時(shí)。

在滿目琳瑯的抗炎物質(zhì)里,蝦青素依靠阻斷炎癥通路NF-κB與下游炎性因子基因表達(dá)(IL-6、TNF-α等)[5, 6],以及對細(xì)胞內(nèi)COX-2(環(huán)氧合酶2)、NO(一氧化氮)的調(diào)控[7],占據(jù)了抗炎戰(zhàn)區(qū)一席之地。

此外,多項(xiàng)人體臨床研究還表明,蝦青素可通過增強(qiáng)NK細(xì)胞、T細(xì)胞、B細(xì)胞等免疫細(xì)胞的數(shù)量或活性,調(diào)控免疫反應(yīng)[8],幫助機(jī)體更好應(yīng)對炎癥這一不速之客。

圖片
圖片

2016年,諾貝爾生理學(xué)或醫(yī)學(xué)獎(jiǎng)再度被日本科學(xué)家摘得,“細(xì)胞自噬機(jī)制”也因此聲名大噪。

顧名思義,自噬=自我吞噬=吃掉自己,是細(xì)胞通過溶酶體降解廢棄蛋白質(zhì)、細(xì)胞器等大分子的“廢物再利用”過程[9]。在線蟲、果蠅、小鼠等一眾模式生物的研究中,都發(fā)現(xiàn)自噬對維持機(jī)體能量代謝穩(wěn)態(tài)、調(diào)控細(xì)胞命運(yùn)、延年益壽不可或缺[10, 11],還是不少正當(dāng)紅抗衰物質(zhì)的靠山,如雷帕霉素、二甲雙胍、亞精胺、尿石素A

興許是眼紅背靠自噬的兄弟們一路長虹,蝦青素把“打不過就加入”貫徹到底,轉(zhuǎn)身擁抱自噬。自2020年起,陸續(xù)有研究指出,蝦青素作為一種優(yōu)良的細(xì)胞自噬激活劑,可靶向線粒體,逆轉(zhuǎn)其因年齡增長導(dǎo)致的數(shù)量、質(zhì)量下降與功能障礙[12, 13],并具有改善老年相關(guān)黃斑變性[14]、神經(jīng)退行性疾病[15, 16]的潛力。

其中,“蝦青素的神經(jīng)保護(hù)作用”尤得學(xué)界關(guān)注,畢竟對于不期而至的神經(jīng)退行性疾病,即便是頂級富豪比爾·蓋茨也曾在采訪中透露“這是他最害怕的事情”。如若蝦青素真能成為下一個(gè)“聰明藥”,必將極大造福全人類的健康未來。

圖片

圖注:頂級期刊Nature曾發(fā)行Insight特刊,對神經(jīng)退行性疾病給予高度關(guān)注

圖片

作為一種程序性死亡過程,細(xì)胞凋亡貫穿于我們生命的全周期。在發(fā)育早期,這一過程能幫助我們選擇性消除一些“不需要”的細(xì)胞,比如人類發(fā)育中手指間的皮膜(即蹼);成年后,細(xì)胞凋亡又能幫助我們清除體內(nèi)已受損且無法被修復(fù)的細(xì)胞,并在預(yù)防癌癥中發(fā)揮重要作用[17, 18]。

對于這一調(diào)控動(dòng)物發(fā)育過程的必經(jīng)之路,蝦青素也當(dāng)仁不讓、參與其中。值得一提是,綜合當(dāng)下研究成果,蝦青素似乎能依據(jù)細(xì)胞狀態(tài)分別發(fā)出“促凋亡”或“抗凋亡”的指令。

例如,在癌細(xì)胞中,凋亡過程被阻止,細(xì)胞不受控制分裂進(jìn)而形成腫瘤,而蝦青素可通過上調(diào)BCL-2、Bax、Caspase-3促凋亡蛋白的基因表達(dá),誘導(dǎo)細(xì)胞發(fā)生凋亡[19-21]。而對于正常細(xì)胞,蝦青素則會(huì)“另眼相看”:調(diào)控p38/MAPKPI3K/AKT信號通路,并下調(diào)促凋亡蛋白[22, 23],避免過度凋亡誘導(dǎo)的神經(jīng)退行性疾病多器官功能障礙綜合征[24]。

圖片

時(shí)光派點(diǎn)評

梳理完種種蝦青素的抗老法門,深感其深藏功與名,傳于街頭巷尾的出色抗氧化能力,不過只是其功效版圖中的光鮮一角。

但就如同Richard A. Miller教授在采訪中提及的那樣——“蝦青素是一種非處方物質(zhì),非常普遍,無論從藥店或是保健品售賣平臺(tái)上,我們都可以輕松獲得?!蹦敲矗鎸@一品類繁多、流通已久的老牌物質(zhì),想收獲ITP計(jì)劃中的意外延壽效果,是否又會(huì)是某種特殊來源、獨(dú)特結(jié)構(gòu)、特別工藝的蝦青素?

不過吧,與其現(xiàn)在就糾結(jié)是哪種蝦青素,不如先等ITP計(jì)劃公布蝦青素的試驗(yàn)數(shù)據(jù),是騾子還是馬,還得拉出來遛遛,真想看看蝦青素究竟憋了啥樣的大招。

—— TIMEPIE ——

參考文獻(xiàn)

[1] Ambati, R. R., Phang, S. M., Ravi, S., & Aswathanarayana, R. G. (2014). Astaxanthin: sources, extraction, stability, biological activities and its commercial applications--a review. Marine drugs, 12(1), 128–152. https:///10.3390/md12010128

[2] Nishida, Y., Yamashita, E., & Miki, W. (2007). Quenching activities of common hydrophilic and lipophilic antioxidants against singlet oxygen using chemiluminescence detection system. Astaxanthin, 11, 16-20. https://doi:10.11501/10996240

[3] Ferrucci, L., & Fabbri, E. (2018). Inflammageing: chronic inflammation in ageing, cardiovascular disease, and frailty. Nature reviews. Cardiology, 15(9), 505–522. https:///10.1038/s41569-018-0064-2

[4] Chung, H. Y., Kim, D. H., Lee, E. K., Chung, K. W., Chung, S., Lee, B., Seo, A. Y., Chung, J. H., Jung, Y. S., Im, E., Lee, J., Kim, N. D., Choi, Y. J., Im, D. S., & Yu, B. P. (2019). Redefining Chronic Inflammation in Aging and Age-Related Diseases: Proposal of the Senoinflammation Concept. Aging and disease, 10(2), 367–382. https:///10.14336/AD.2018.0324

[5] Suzuki, Y., Ohgami, K., Shiratori, K., Jin, X. H., Ilieva, I., Koyama, Y., Yazawa, K., Yoshida, K., Kase, S., & Ohno, S. (2006). Suppressive effects of astaxanthin against rat endotoxin-induced uveitis by inhibiting the NF-kappaB signaling pathway. Experimental eye research, 82(2), 275–281. https:///10.1016/j.exer.2005.06.023

[6] Speranza, L., Pesce, M., Patruno, A., Franceschelli, S., de Lutiis, M. A., Grilli, A., & Felaco, M. (2012). Astaxanthin treatment reduced oxidative induced pro-inflammatory cytokines secretion in U937: SHP-1 as a novel biological target. Marine drugs, 10(4), 890–899. https:///10.3390/md10040890

[7] Choi, S. K., Park, Y. S., Choi, D. K., & Chang, H. I. (2008). Effects of astaxanthin on the production of NO and the expression of COX-2 and iNOS in LPS-stimulated BV2 microglial cells. Journal of microbiology and biotechnology, 18(12), 1990–1996.

[8] Donoso, A., González-Durán, J., Mu?oz, A. A., González, P. A., & Agurto-Mu?oz, C. (2021). 'Therapeutic uses of natural astaxanthin: An evidence-based review focused on human clinical trials'. Pharmacological research, 166, 105479. https:///10.1016/j.phrs.2021.105479

[9] Glick, D., Barth, S., & Macleod, K. F. (2010). Autophagy: cellular and molecular mechanisms. The Journal of pathology, 221(1), 3–12. https:///10.1002/path.2697

[10] Nakamura, S., & Yoshimori, T. (2018). Autophagy and Longevity. Molecules and cells, 41(1), 65–72. https:///10.14348/molcells.2018.2333

[11] Hansen, M., Rubinsztein, D. C., & Walker, D. W. (2018). Autophagy as a promoter of longevity: insights from model organisms. Nature reviews. Molecular cell biology, 19(9), 579–593. https:///10.1038/s41580-018-0033-y

[12] Varghese, N., Werner, S., Grimm, A., & Eckert, A. (2020). Dietary Mitophagy Enhancer: A Strategy for Healthy Brain Aging?. Antioxidants (Basel, Switzerland), 9(10), 932. https:///10.3390/antiox9100932

[13] Lee, H., Lim, J. W., & Kim, H. (2020). Effect of Astaxanthin on Activation of Autophagy and Inhibition of Apoptosis in Helicobacter pylori-Infected Gastric Epithelial Cell Line AGS. Nutrients, 12(6), 1750. https:///10.3390/nu12061750

[14] Lewis Luján, L. M., McCarty, M. F., Di Nicolantonio, J. J., Gálvez Ruiz, J. C., Rosas-Burgos, E. C., Plascencia-Jatomea, M., & Iloki Assanga, S. B. (2022). Nutraceuticals/Drugs Promoting Mitophagy and Mitochondrial Biogenesis May Combat the Mitochondrial Dysfunction Driving Progression of Dry Age-Related Macular Degeneration. Nutrients, 14(9), 1985. https:///10.3390/nu14091985

[15] Sorrenti, V., Davinelli, S., Scapagnini, G., Willcox, B. J., Allsopp, R. C., & Willcox, D. C. (2020). Astaxanthin as a Putative Geroprotector: Molecular Basis and Focus on Brain Aging. Marine drugs, 18(7), 351. https:///10.3390/md18070351

[16] Fu, M., Liang, X., Zhang, X., Yang, M., Ye, Q., Qi, Y., Liu, H., & Zhang, X. (2022). Astaxanthin delays brain aging in senescence-accelerated mouse prone 10: inducing autophagy as a potential mechanism. Nutritional neuroscience, 1–11. Advance online publication. https:///10.1080/1028415X.2022.2055376

[17] https://www./genetics-glossary/apoptosis

[18] Elmore S. (2007). Apoptosis: a review of programmed cell death. Toxicologic pathology, 35(4), 495–516. https:///10.1080/01926230701320337

[19] Kim, M. S., Ahn, Y. T., Lee, C. W., Kim, H., & An, W. G. (2020). Astaxanthin Modulates Apoptotic Molecules to Induce Death of SKBR3 Breast Cancer Cells. Marine drugs, 18(5), 266. https:///10.3390/md18050266

[20] Hormozi, M., Ghoreishi, S., & Baharvand, P. (2019). Astaxanthin induces apoptosis and increases activity of antioxidant enzymes in LS-180 cells. Artificial cells, nanomedicine, and biotechnology, 47(1), 891–895. https:///10.1080/21691401.2019.1580286

[21] Kavitha, K., Kowshik, J., Kishore, T. K., Baba, A. B., & Nagini, S. (2013). Astaxanthin inhibits NF-κB and Wnt/β-catenin signaling pathways via inactivation of Erk/MAPK and PI3K/Akt to induce intrinsic apoptosis in a hamster model of oral cancer. Biochimica et biophysica acta, 1830(10), 4433–4444. https:///10.1016/j.bbagen.2013.05.032

[22] Guo, S. X., Zhou, H. L., Huang, C. L., You, C. G., Fang, Q., Wu, P., Wang, X. G., & Han, C. M. (2015). Astaxanthin attenuates early acute kidney injury following severe burns in rats by ameliorating oxidative stress and mitochondrial-related apoptosis. Marine drugs, 13(4), 2105–2123. https:///10.3390/md13042105

[23] Wu, H., Niu, H., Shao, A., Wu, C., Dixon, B. J., Zhang, J., Yang, S., & Wang, Y. (2015). Astaxanthin as a Potential Neuroprotective Agent for Neurological Diseases. Marine drugs, 13(9), 5750–5766. https:///10.3390/md13095750

[24] Kam, P. C., & Ferch, N. I. (2000). Apoptosis: mechanisms and clinical implications. Anaesthesia, 55(11), 1081–1093. https:///10.1046/j.1365-2044.2000.01554.x

圖片

    本站是提供個(gè)人知識(shí)管理的網(wǎng)絡(luò)存儲(chǔ)空間,所有內(nèi)容均由用戶發(fā)布,不代表本站觀點(diǎn)。請注意甄別內(nèi)容中的聯(lián)系方式、誘導(dǎo)購買等信息,謹(jǐn)防詐騙。如發(fā)現(xiàn)有害或侵權(quán)內(nèi)容,請點(diǎn)擊一鍵舉報(bào)。
    轉(zhuǎn)藏 分享 獻(xiàn)花(0

    0條評論

    發(fā)表

    請遵守用戶 評論公約