文章來自~《重慶醫(yī)學(xué)》2022年第4期 作者:胡盼盼,孫增先,姜艷嬌 綜述,劉 云△審校 (1.徐州醫(yī)科大學(xué)附屬連云港醫(yī)院/連云港市第一人民醫(yī)院藥學(xué)部,江蘇連云港 222061) [摘要] 肺動(dòng)脈高壓(PH)是一類肺動(dòng)脈壓力超過一定限值的肺血管疾病,能夠?qū)е掠倚乃ソ?,甚至死亡,同時(shí)具有高發(fā)病率和高病死率,嚴(yán)重威脅人類健康。然而,PH的發(fā)病機(jī)制十分復(fù)雜,目前還沒有完全闡明,但部分因素已被證實(shí),如血管活性物質(zhì)的失衡、免疫炎性反應(yīng)、基因突變、非編碼RNA等。該文主要通過查閱近5年的PH相關(guān)文獻(xiàn),對(duì)其發(fā)病機(jī)制作一綜述。 [關(guān)鍵詞] 肺動(dòng)脈高壓;血管活性物質(zhì);炎性因子;基因突變;非編碼RNA 肺動(dòng)脈高壓(pulmonary hypertension,PH)是一類以肺動(dòng)脈壓力增加并超過一定限值為特征的進(jìn)行性慢性肺血管疾病,能夠?qū)е掠倚乃ソ撸踔了劳?,有較高的發(fā)病率和病死率[1]。2018年第6屆世界肺動(dòng)脈高壓研討會(huì)上,PH被定義為:靜息狀態(tài)下,平均肺動(dòng)脈壓(mean pulmonary arterial pressure,mPAP)>20 mm Hg且肺毛細(xì)血管楔壓(pulmonary artery wedge pressure,PAWP)>15 mm Hg或肺血管阻力(pulmonary vascular resistance,PVR)>3 WU[2]。PH的致病因素很多,根據(jù)病因的不同,將其分為以下五大類:(1)動(dòng)脈性PH(PAH),包括特發(fā)性PAH、遺傳性PAH、藥物和毒素引起的PAH等;(2)左心疾病所致PH;(3)肺部疾病和(或)缺氧導(dǎo)致的PH;(4)慢性血栓栓塞性PH(CTEPH);(5)具有不明確和(或)多因素機(jī)制的PH[3]。本文主要通過查閱近5年的PH相關(guān)文獻(xiàn),對(duì)其發(fā)病機(jī)制作一綜述。 1 血管活性物質(zhì)的失衡 PH中的血管重構(gòu)主要涉及肺動(dòng)脈血管的內(nèi)膜、中膜和外膜,其中中膜層的主要細(xì)胞成分平滑肌細(xì)胞增殖起主要作用[4]。血管活性物質(zhì)一氧化氮(nitric oxide,NO)、前列環(huán)素(prostaglandin I2,PGI2)、內(nèi)皮素1(endothelin-1,ET-1)、低氧誘導(dǎo)因子(hypoxia-inducible factor,HIFs)等均能夠從不同的方面促進(jìn)或抑制肺動(dòng)脈平滑肌細(xì)胞(PASMCs)的增殖,這些物質(zhì)的失衡(降低或增加)在PASMCs增殖導(dǎo)致的血管重構(gòu)中起著重要的作用。 1.1 NO、PGI2及ET-1 NO是體內(nèi)重要的信使分子,由內(nèi)皮型一氧化氮合酶(eNOS)產(chǎn)生,在維持血管穩(wěn)態(tài)并抑制PH的發(fā)展方面有重要作用;在體內(nèi)NO能夠激活可溶性鳥苷酸環(huán)化酶(sGC),從而使三磷酸鳥苷(GTP)轉(zhuǎn)化為環(huán)磷酸鳥苷(cGMP),隨后激活cGMP依賴的蛋白激酶G(PKG),活化的PKG能夠通過多種機(jī)制舒張血管,抑制PASMCs增殖;PH通常存在NO生物利用度降低導(dǎo)致的PKG活性受損,從而發(fā)生肺血管的重構(gòu)[5]。 PGI2是血管內(nèi)皮細(xì)胞中花生四烯酸(AA)的主要代謝產(chǎn)物,可以與IP受體、過氧化物酶體增殖物激活受體(PPAR)等結(jié)合,在舒張血管、抑制血小板聚集和PASMCs增殖中具有重要作用[6]。 ET-1是一種縮血管活性物質(zhì),其產(chǎn)生和釋放受多種刺激因素調(diào)節(jié),包括血管緊張素Ⅱ(Ang Ⅱ)、活性氧簇(reactive oxygen species,ROS)、促炎細(xì)胞因子等,在PASMCs和內(nèi)皮細(xì)胞中均有表達(dá),能夠與PASMCs上的內(nèi)皮素A受體(ETA)和內(nèi)皮細(xì)胞上的內(nèi)皮素B受體(ETB)結(jié)合,從而促進(jìn)血管收縮和細(xì)胞增殖[7-8]。 1.2 HIFs與骨膜素 HIFs是一類轉(zhuǎn)錄因子,包括HIF-1、HIF-2和HIF-3,分別由α、β兩個(gè)亞基組成,能夠調(diào)控細(xì)胞的增殖、分化和凋亡,尤其是HIF-1α和HIF-2α,在PH的肺血管收縮和重構(gòu)中起重要作用[9-15]。有研究表明,常氧條件下HIF-1α和HIF-2α在脯氨酸羥化酶(PHD)的作用下很快被降解,表達(dá)水平都較低。但在缺氧條件下,PASMCs中的HIF-1α表達(dá)升高,并促進(jìn)了PASMCs的增殖;而HIF-2α則在肺血管內(nèi)皮細(xì)胞中表達(dá)升高,并通過誘導(dǎo)內(nèi)皮間質(zhì)轉(zhuǎn)化( 骨膜素作為一種參與細(xì)胞黏附的細(xì)胞外基質(zhì)蛋白,在肺動(dòng)脈內(nèi)皮細(xì)胞中通過HIF-1α依賴性機(jī)制產(chǎn)生,抑制骨膜素的表達(dá)可改善PH小鼠的血流動(dòng)力學(xué)和心臟反應(yīng),抑制肺動(dòng)脈內(nèi)皮細(xì)胞中血管內(nèi)皮生長因子(VEGF)和HIF-1α的釋放從而逆轉(zhuǎn)BMPR2表達(dá)下調(diào),而骨膜素的過表達(dá)則誘導(dǎo)肺動(dòng)脈內(nèi)皮細(xì)胞中HIF的活化并增加ET-1和VEGF的產(chǎn)生,并且敲低HIF-1α抑制了骨膜素促進(jìn)血管生成的作用[12]。 2 免疫炎性反應(yīng) 近年來,隨著PH研究的不斷深入,發(fā)現(xiàn)免疫炎性反應(yīng)與PH的發(fā)病機(jī)制密切相關(guān),血管周圍的炎性浸潤是PH的主要病理特征之一。在PH患者及PH動(dòng)物模型的肺動(dòng)脈血管壁中存在大量的巨噬細(xì)胞積累。有研究表明,巨噬細(xì)胞能夠被成纖維細(xì)胞激活,激活后的巨噬細(xì)胞能夠增強(qiáng)體內(nèi)白細(xì)胞介素(IL)-6、信號(hào)傳導(dǎo)和轉(zhuǎn)錄激活蛋白3(signal transducer and activator of transcription,STAT3)、HIF-1等信號(hào)通路,從而促進(jìn)PH的血管重構(gòu),表明炎性細(xì)胞和炎性因子參與了PH的發(fā)生、發(fā)展[13-14]。并且,在血管周圍聚集的巨噬細(xì)胞、T淋巴細(xì)胞等炎性細(xì)胞都能夠釋放出大量的細(xì)胞因子和趨化因子,促進(jìn)肺血管內(nèi)皮細(xì)胞損傷、PASMCs增殖,從而加重肺血管重構(gòu)。接下來,將介紹幾個(gè)細(xì)胞因子或趨化因子在PH中的作用。 2.1 炎癥小體NLRP3(the NLR pyrin domain-containing protein 3) NLRP3是4個(gè)已知的結(jié)構(gòu)亞組中研究得最多的炎癥小體,越來越多的證據(jù)表明,NLRP3炎癥通路參與多種呼吸道疾病和肺部疾病的發(fā)病機(jī)制[15-16]。在PH發(fā)生的初始階段,核因子κB(NF-κB)通路被激活,導(dǎo)致包括NLRP3在內(nèi)的炎癥因子表達(dá)上調(diào),而NLRP3則通過與caspase-1的相互作用使caspase-1活化,進(jìn)而使促炎性細(xì)胞因子IL-1β和IL-18的表達(dá)增加,最終導(dǎo)致肺間質(zhì)纖維化和肺動(dòng)脈平滑肌細(xì)胞的增殖與凋亡抵抗[17-18]。 2.2 高遷移率族蛋白1(high mobility group box 1,HMGB1)與Toll樣受體3(TLR3) HMGB1是一種非經(jīng)典的炎性細(xì)胞因子,激活的HMGB1在細(xì)胞膜表面與Toll樣受體4(TLR4)結(jié)合,能夠通過抑制骨形成蛋2受體(BMPR2)信號(hào)通路,促進(jìn)炎性因子如IL-6、腫瘤壞死因子-α(TNF-α)等的產(chǎn)生,促進(jìn)炎性反應(yīng)和PASMCs增殖,最終加重PH中的血管重塑[19]。多肽P5779就是GOLDENBERG等[20]針對(duì)HMGB1/TLR4信號(hào)通路采用的一種新型多肽,它能夠特異性地以二硫鍵的形式靶向細(xì)胞外HMGB1,干擾其與TLR4的結(jié)合,但同時(shí)不會(huì)完全抑制多功能免疫受體TLR4的信號(hào)傳遞,這為探索PH新型藥物提供了一個(gè)可能。 TLR3作為TLR家族的先天免疫受體TLR成員,在肺動(dòng)脈內(nèi)皮細(xì)胞中能夠通過IL-10誘導(dǎo)產(chǎn)生,對(duì)肺動(dòng)脈血管發(fā)揮保護(hù)作用;TLR3缺乏能夠增加ET-1和IL-6的表達(dá),促進(jìn)內(nèi)皮細(xì)胞凋亡,加重重度PH的進(jìn)展;因此,恢復(fù)TLR3信號(hào)可能成為治療PH的新途徑[21]。 2.3 促有絲分裂因子(HIMF)與細(xì)胞外鈣敏感受體(CaSR) HIMF是一種促炎性細(xì)胞因子,CaSR則是炎癥激活的關(guān)鍵因素,二者都能夠誘導(dǎo)NF-κB的激活、IL-4和IL-6的表達(dá)及VEGF的產(chǎn)生。而最近一項(xiàng)研究表明,缺氧誘導(dǎo)的HIMF能夠與CaSR的胞內(nèi)域結(jié)合,通過其自身的二聚化促進(jìn) CaSR 的二聚化,激活CaSR,從而介導(dǎo)間歇性缺氧引起的PASMCs增殖及肺血管重塑和PH的發(fā)展[22]。 3 基因突變 3.1 骨形成蛋白2(bone morphogenetic protein 2,BMP2) 骨形成蛋白(BMP)是轉(zhuǎn)化生長因子β超家族的一員,BMPR2突變是遺傳性PH和特發(fā)性PH(尤其是遺傳性PH)的常見因素,且在無BMPR2突變的PAH中也檢測(cè)到BMPR2蛋白表達(dá)降低。研究表明,BMPR2突變不僅能夠誘導(dǎo)肺血管內(nèi)皮細(xì)胞發(fā)生EndMT和炎性反應(yīng),參與肺血管的重構(gòu),還能夠引起內(nèi)皮細(xì)胞的線粒體功能障礙,導(dǎo)致線粒體DNA損傷和凋亡,阻止肺血管重構(gòu)的逆轉(zhuǎn)[23]。目前,靶向BMPR2基因轉(zhuǎn)錄的微RNA(microRNA,miR),如miR-17/92、miR-21、miR-125a等已成為治療PH的新靶點(diǎn)[24];同時(shí),BMPR2的上游調(diào)節(jié)因子FHIT也可能成為PH治療的新靶點(diǎn)[25]。 3.2 CAV1蛋白 CAV1是胞膜上一種整合膜蛋白,在很多細(xì)胞中都有表達(dá),是很多信號(hào)級(jí)聯(lián)開始的地方;在CAV1基因突變小鼠的體內(nèi)發(fā)現(xiàn)了eNOS活性增加,并出現(xiàn)了PH癥狀,而在CAV1基因敲除小鼠中即使給予高水平的NO,也沒有發(fā)生PH[26-27]。有研究表明,CAV1基因缺失導(dǎo)致的eNOS動(dòng)態(tài)負(fù)調(diào)節(jié)和氧化應(yīng)激在PH發(fā)生中起關(guān)鍵作用,可能降低BMPR2蛋白的表達(dá),并促進(jìn)轉(zhuǎn)化生長因子β(TGF-β)信號(hào)轉(zhuǎn)導(dǎo),從而促進(jìn)肺血管重構(gòu)[28]。 3.3 KCNK3通道 鉀離子(K+)通道是一種分布最廣的離子通道群,也是一種跨膜蛋白,連接細(xì)胞內(nèi)與細(xì)胞外的環(huán)境,對(duì)膜電位的調(diào)節(jié)起著重要作用。PASMCs中NO和cGMP等能夠激活K+通道或使其表達(dá)上調(diào),引起膜超極化并增強(qiáng)膜復(fù)極化,隨后導(dǎo)致電壓依賴性鈣離子(Ca2+)通道關(guān)閉并降低細(xì)胞內(nèi)游離Ca2+濃度,導(dǎo)致肺血管擴(kuò)張[29]。KCNK3 蛋白是一個(gè)向外的 K+通道,也稱為 TASK1或 K2P3.1,已被確認(rèn)為PH新的易感基因。研究表明,KCNK3的功能喪失或活性抑制能夠增強(qiáng)PASMCs膜去極化相關(guān)的血管收縮,使HIF-1α和IL-6表達(dá)增加及PASMCs過度增殖[29-30]。 3.4 PIM1蛋白 PIM1是一種在 PAH中表達(dá)上調(diào)的癌蛋白。研究發(fā)現(xiàn),PIM1能夠直接靶向狼瘡Ku自身抗原蛋白p70(KU70)參與調(diào)節(jié)DNA損傷修復(fù)及PASMCs增殖和凋亡等過程[31];使用PIM1抑制劑SGI-1776或 TP-3654能夠明顯抑制非同源末端連接DNA的修復(fù)和PASMCs增殖并誘導(dǎo)細(xì)胞凋亡,同時(shí)也能夠顯著改善大鼠模型中的肺血流動(dòng)力學(xué)和肺血管重構(gòu)。 4 非編碼RNA(non-coding RNA,ncRNA) 4.1 長鏈非編碼RNA(long noncoding RNA,lncRNA) lncRNA是長度大于200個(gè)核苷酸的無編碼轉(zhuǎn)錄物,沒有明顯的蛋白質(zhì)編碼功能,通常與蛋白質(zhì)或其他RNA分子結(jié)合,在多種生物學(xué)過程中起著重要作用,包括細(xì)胞增殖、分化及凋亡[32]。目前,lncRNA已顯示出在各種疾病中的作用,并已被確定為潛在的治療靶點(diǎn),已有不少lncRNA被證實(shí)參與調(diào)節(jié)PH的PASMCs增殖。 ZHANG等[33]研究表明,Hoxa-as3在PH中高表達(dá)并參與缺氧誘導(dǎo)的細(xì)胞增殖,該基因可由轉(zhuǎn)錄激活因子H3K9Ac的乙?;险{(diào),通過與其下游基因Hoxa3的相互作用加速細(xì)胞周期并促進(jìn)細(xì)胞增殖。TYKRIL為酪氨酸激酶受體誘導(dǎo)型lncRNA,是第一個(gè)已知的調(diào)控p53/PDGFRβ軸的lncRNA,能夠通過p53介導(dǎo)的 PDGFRβ維持PASMCs過度增殖表型從而促進(jìn)PASMCs增殖[34]。在正常生理狀態(tài)下,Rps41能夠與白細(xì)胞介素增強(qiáng)劑結(jié)合因子3(ILF3)結(jié)合,加速ILF3的降解,從而減少HIF-1α mRNA的積累,降低其穩(wěn)定性;但在缺氧狀態(tài)下,Rps41的表達(dá)被下調(diào),導(dǎo)致ILF3和 HIF-1α蛋白水平升高,促進(jìn)PASMCs的增殖和遷移[35]。TUG1則可以直接與miR-328結(jié)合,以P53依賴的方式抑制DNA損傷后的細(xì)胞周期進(jìn)程,從而抑制PASMCs增殖[36];lncRNA-MEG3則以序列特異性的方式與miR-328-3p結(jié)合并使其降解,進(jìn)而增加下游靶基因胰島素樣生長因子1受體(IGF1R)的表達(dá),調(diào)控PH發(fā)展過程中細(xì)胞增殖、細(xì)胞周期進(jìn)程、細(xì)胞遷移和凋亡[37]。另外,研究表明,lncRNA-H19有望成為PH右心衰竭的新生物標(biāo)志物和治療靶點(diǎn),抑制H19的表達(dá)能夠改善PH右心衰竭[38]。 4.2 環(huán)狀RNA(circRNA) 環(huán)狀RNA也是非編碼RNA的一種,可以調(diào)節(jié)各種生物學(xué)過程,包括細(xì)胞增殖。鈣調(diào)蛋白4基因(calmodulin 4 gene,circ-calm4)便是一種新型的環(huán)狀RNA,在細(xì)胞核和細(xì)胞質(zhì)中都有表達(dá)。研究表明,該基因能夠吸附miR-337-3p,作為 miR-337-3p 的分子海綿來調(diào)節(jié)肌球蛋白-10的表達(dá),肌球蛋白-10則通過調(diào)節(jié)細(xì)胞周期來促進(jìn)PASMCs增殖[39]。 5 小 結(jié) PH是一種嚴(yán)重影響人類生活質(zhì)量和生命健康的肺血管疾病,其發(fā)病機(jī)制尚不完全清楚,目前已知與血管活性物質(zhì)的失衡、免疫炎性反應(yīng)、基因突變及非編碼RNA等有關(guān)。針對(duì)這些已知的致病機(jī)制,PH的靶向藥物被研發(fā)出來,主要包括PDE-5抑制劑、鳥苷酸環(huán)化酶激動(dòng)劑、前列環(huán)素類似物、選擇性IP受體激動(dòng)劑及內(nèi)皮素受體拮抗劑等。同時(shí),一些新的治療藥物(如多肽P5779)及新的治療靶點(diǎn)(如HMGB1)等也相繼被發(fā)現(xiàn),但這些新的治療藥物和治療靶點(diǎn)都還未獲得可靠的臨床數(shù)據(jù)。目前來看,盡管擁有大量的治療藥物和治療手段,PH仍是一種具有高發(fā)病率和高病死率的疾病,這就需要對(duì)PH進(jìn)行更深入的研究,尋找其他途徑的靶向藥物或新的治療方案,以改善患者的血管結(jié)構(gòu)和右心功能,以及臨床癥狀及預(yù)后,降低其發(fā)病率和病死率。 參考文獻(xiàn) [1] HOEPER M M,GHOFRANI H A,GRüNIG E,et al.Pulmonary hypertension[J].Dtsch Arztebl Int,2017,114(5):73-84. [2] SIMONNEAU G,MONTANI D,CELERMAJER D S,et al.Haemodynamic definitions and updated clinical classification of pulmonary hypertension[J].Eur Respir J,2019,53(1):1801913. [3] THENAPPAN T,ORMISTON M L,RYAN J J,et al.Pulmonary arterial hypertension:pathogenesis and clinical management[J].BMJ,2018,360:5492. [4] STENMARK K R,F(xiàn)RID M G,GRAHAM B B,et al.Dynamic and diverse changes in the functional properties of vascular smooth muscle cells in pulmonary hypertension[J].Cardiovasc Res,2018,114(4):551-564. [5] EVANS C E,ZHAO Y Y.Molecular basis of nitrative stress in the pathogenesis of pulmonary hypertension[J].Adv Exp Med Biol,2017,967:33-45. [6] DEL POZO R,HERNANDEZ GONZALEZ I,ESCRIBANO-SUBIAS P.The prostacyclin pathway in pulmonary arterial hypertension:a clinical review[J].Expert Rev Respir Med,2017,11(6):491-503. [7] ROSSI G P,SECCIA T M,BARTON M,et al.Endothelial factors in the pathogenesis and treatment of chronic kidney disease Part Ⅰ:General mechanisms:a joint consensus statement from the European Society of Hypertension Working Group on Endothelin and Endothelial Factors and The Japanese Society of Hypertension[J].J Hypertens,2018,36(3):451-461. [8] 梁榮章,吳永泉,鄧朝勝.內(nèi)皮素通路在靶向治療慢性血栓栓塞性肺動(dòng)脈高壓中的作用及機(jī)制[J].中華高血壓雜志,2018,26(10):919-922. [9] SMITH K A,WAYPA G B,DUDLEY V J,et al.Role of hypoxia-inducible factors in regulating right ventricular function and remodeling during chronic hypoxia-induced pulmonary hypertension[J].Am J Respir Cell Mol Biol,2020,63(5):652-664. [10] TANG H,BABICHEVA A,MCDERMOTT K M,et al.Endothelial HIF-2α contributes to severe pulmonary hypertension due to endothelial-to-mesenchymal transition[J].Am J Physiol Lung Cell Mol Physiol,2018,314(2):L256-275. [11] WANG Z,YANG K,ZHENG Q,et al.Divergent changes of p53 in pulmonary arterial endothelial and smooth muscle cells involved in the development of pulmonary hypertension[J].Am J Physiol Lung Cell Mol Physiol,2019,316(1):L216-228. [12] NIE X,SHEN C,TAN J,et al.Periostin:a potential therapeutic target for pulmonary hypertension?[J].Circ Res,2020,127(9):1138-1152. [13] PRINS K W,ARCHER S L,PRITZKER M,et al.Interleukin-6 is independently associated with right ventricular function in pulmonary arterial hypertension[J].J Heart Lung Transplant,2018,37(3):376-384. [14] D′ALESSANDRO A,EL KASMI K C,PLE CITwidth=11,height=17,dpi=110-HLAVATwidth=11,height=17,dpi=110 L,et al.Hallmarks of pulmonary hypertension:mesenchymal and inflammatory cell metabolic reprogramming[J].Antioxid Redox Signal,2018,28(3):230-250. [15] JIA H,LIU Y,GUO D,et al.PM2.5-induced pulmonary inflammation via activating of the NLRP3/caspase-1 signaling pathway[J].Environ Toxicol,2021,36(3):298-307. [16] WANG H,LV C,WANG S,et al.NLRP3 inflammasome involves in the acute exacerbation of patients with chronic obstructive pulmonary disease[J].Inflammation,2018,41(4):1321-1333. [17] FU C,HAO S,LIU Z,et al.SOD2 ameliorates pulmonary hypertension in a murine model of sleep apnea via suppressing expression of NLRP3 in CD11b+ cells[J].Respir Res,2020,21(1):9. [18] UDJUS C,CERO FT,HALVORSEN B,et al.Caspase-1 induces smooth muscle cell growth in hypoxia-induced pulmonary hypertension[J].Am J Physiol Lung Cell Mol Physiol,2019,316(6):L999-1012. [19] WANG J,TIAN X T,PENG Z,et al.HMGB1/TLR4 promotes hypoxic pulmonary hypertension via suppressing BMPR2 signaling[J].Vascul Pharmacol,2019,117(1):35-44. [20] GOLDENBERG N M,HU Y,HU X,et al.Therapeutic targeting of high-mobility group Box-1 in pulmonary arterial hypertension[J].Am J Respir Crit Care Med,2019,199(12):1566-1569. [21] FARKAS D,THOMPSON A A R,BHAGWANI A R,et al.Toll-like receptor 3 is a therapeutic target for pulmonary hypertension[J].Am J Respir Crit Care Med,2019,199(2):199-210. [22] ZENG X,ZHU L,XIAO R,et al.Hypoxia-induced mitogenic factor acts as a nonclassical ligand of calcium-sensing receptor,therapeutically exploitable for intermittent hypoxia-induced pulmonary hypertension[J].Hypertension,2017,69(5):844-854. [23] THOMPSON A A R,LAWRIE A.Targeting vascular remodeling to treat pulmonary arterial hypertension[J].Trends Mol Med,2017,23(1):31-45. [24] ORRIOLS M,GOMEZ-PUERTO M C,TEN DIJKE P.BMP type Ⅱ receptor as a therapeutic target in pulmonary arterial hypertension[J].Cell Mol Life Sci,2017,74(16):2979-2995. [25] DANNEWITZ PROSSEDA S,TIAN X,KUR AMOTO K,et al.FHIT,a novel modifier gene in pulmonary arterial hypertension[J].Am J Respir Crit Care Med,2019,199(1):83-98. [26] SOUTHGATE L,MACHADO R D,GRwidth=11,height=14,dpi=110F S,et al.Molecular genetic framework underlying pulmonary arterial hypertension[J].Nat Rev Cardiol,2020,17(2):85-95. [27] GAJECKI D,GAWRYS J,SZAHIDEWICZ-KRU PSKA E,et al.Novel molecular mechanisms of pulmonary hypertension:a search for biomarkers and novel drug targets-from bench to bed site[J].Oxid Med Cell Longev,2020,2020:7265487. [28] OLIVEIRA S D S,CHEN J,CASTELLON M,et al.Injury-induced shedding of extracellular vesicles depletes endothelial cells of cav-1(caveolin-1)and enables TGF-β(transforming growth factor-β)-dependent pulmonary arterial hypertension[J].Arterioscler Thromb Vasc Biol,2019,39(6):1191-1202. [29] BABICHEVA A,ZHAO T,YUAN J X.KCNK3 channel:a new player in the field of pulmonary vascular disease[J].Circ Res,2019,125(7):696-698. [30] LAMBERT M,BOET A,RUCKER-MARTIN C,et al.Loss of KCNK3 is a hallmark of RV hypertrophy/dysfunction associated with pulmonary hypertension[J].Cardiovasc Res,2018,114(6):880-893. [31] LAMPRON M C,VITRY G,NADEAU V,et al.PIM1(Moloney Murine Leukemia Provirus Integration Site)inhibition decreases the nonhomologous end-joining dna damage repair signaling pathway in pulmonary hypertension[J].Arterioscler Thromb Vasc Biol,2020,40(3):783-801. [32] HAFEEZ N,CHAN S Y.A New “TYK” tok era for the study of long noncoding RNAs in pulmonary hypertension[J].Am J Respir Crit Care Med,2020,202(10):1339-1341. [33] ZHANG H,LIU Y,YAN L,et al.Long noncoding RNA Hoxaas3 contributes to hypoxia-induced pulmonary artery smooth muscle cell proliferation[J].Cardiovasc Res,2019,115(3):647-657. [34] ZEHENDNER C M,VALASARAJAN C,WE RNER A,et al.Long noncoding RNA TYKRIL plays a role in pulmonary hypertension via the p53-mediated regulation of PDGFRβ[J].Am J Respir Crit Care Med,2020,202(10):1445-1457. [35] LIU Y,ZHANG H,LI Y,et al.Long noncoding RNA Rps4l mediates the proliferation of hypoxic pulmonary artery smooth muscle cells[J].Hypertension,2020,76(4):1124-1133. [36] WANG S,CAO W,GAO S,et al.TUG1 regulates pulmonary arterial smooth muscle cell proliferation in pulmonary arterial hypertension[J].Can J Cardiol,2019,35(11):1534-1545. [37] XING Y,ZHENG X,F(xiàn)U Y,et al.Long noncoding rna-maternally expressed gene 3 contributes to hypoxic pulmonary hypertension[J].Mol Ther,2019,27(12):2166-2181. [38] OMURA J,HABBOUT K,SHIMAUCHI T,et al.Identification of long noncoding rna h19 as a new biomarker and therapeutic target in right ventricular failure in pulmonary arterial hypertension[J].Circulation,2020,142(15):1464-1484. [39] ZHANG J,LI Y,QI J,et al.Circ-calm4 serves as an mir-337-3p sponge to regulate myo10(myosin 10)and promote pulmonary artery smooth muscle proliferation[J].Hypertension,2020,75(3):668-679. The latest research progress on the pathogenesis of pulmonary hypertension* HU Panpan,SUN Zengxian,JIANG Yanjiao,LIU Yun△ (Department of Pharmacy,Xuzhou Medical University Affiliated Hospital of Lianyungang/the First People′s Hospital of Lianyungang,Lianyungang,Jiangsu 222061,China) [Abstract] Pulmonary hypertension(PH)is a type of pulmonary vascular disease in which pulmonary arterial pressure exceeds a certain limit,which can lead to right heart failure and even death.It has high morbidity and high mortality,which seriously threatens human health.However,the pathogenesis of PH is very complex,and has not been fully elucidated yet.Some factors have been confirmed,such as imbalance of vasoactive substances,immune inflammatory response,gene mutation,non-coding RNA,etc.This article mainly summarized the pathogenesis of PA by reviewing the related literatures in the past 5 years. [Key words] pulmonary hypertension;vasoactive substance;inflammatory factors;gene mutation;non-coding RNA [中圖法分類號(hào)] R544.1 [文獻(xiàn)標(biāo)識(shí)碼] A [文章編號(hào)] 1671-8348(2022)04-0678-05 doi:10.3969/j.issn.1671-8348.2022.04.027 網(wǎng)絡(luò)首發(fā) *基金項(xiàng)目:國家自然科學(xué)基金項(xiàng)目(31871155)。 |
|