日韩黑丝制服一区视频播放|日韩欧美人妻丝袜视频在线观看|九九影院一级蜜桃|亚洲中文在线导航|青草草视频在线观看|婷婷五月色伊人网站|日本一区二区在线|国产AV一二三四区毛片|正在播放久草视频|亚洲色图精品一区

分享

30分鐘帶你了解「消息中間件」Kafka、RocketMQ

 Coder編程 2021-05-13

消息中間件的應用場景

  • 異步解耦
  • 削峰填谷
  • 順序收發(fā)
  • 分布式事務一致性

騰訊應用案例:

主流 MQ 框架及對比

說明

  • Kafka:整個行業(yè)應用廣泛
  • RocketMQ:阿里,從 apache 孵化
  • Pulsar:雅虎開源,符合云原生架構的消息隊列,社區(qū)活躍
  • RabbitMQ 架構比較老,AMQP并沒有在主流的 MQ 得到支持
  • NSQ:內(nèi)存型,不是最優(yōu)選擇
  • ActiveMQ、ZeroMQ 可忽略

Kafka 優(yōu)點

  • 非常成熟,生態(tài)豐富,與 Hadoop 連接緊密
  • 吞吐非常高,可用性高
    • sharding
    • 提升 replication 速度
  • 主要功能:pub-sub,壓縮支持良好
  • 可按照 at least once, at most once 進行配置使用,exactly once 需要 Consumer 配合
  • 集群部署簡單,但 controller 邏輯很復雜,實現(xiàn)partition 的多副本、數(shù)據(jù)一致性
  • controller 依賴 ZooKeeper
  • 異步刷磁盤(除了錢的業(yè)務,很少有同步 flush 的需求)

Kafka 缺點

  • 寫入延時穩(wěn)定性問題,partition 很多時
    • Kafka 通常用機械盤,隨機寫造成吞吐下降和延時上升
    • 100ms ~ 500ms
  • 運維的復雜性
    • 單機故障后補充副本
    • 數(shù)據(jù)遷移
    • 快手的優(yōu)化:遷移 partition 時舊數(shù)據(jù)不動,新數(shù)據(jù)寫入新 partition 一定時間后直接切換

RocketMQ

  • 阿里根據(jù) Kafka 改造適應電商等在線業(yè)務場景
  • 以犧牲性能為代價增強功能
    • 按 key 對消息查詢,維護 hash 表,影響 io
    • 為了在多 shard 場景下保證寫入延遲穩(wěn)定,在 broker 級別將所有 shard 當前寫入的數(shù)據(jù)放入一個文件,形成 commitlog list,放若干個 index 文件維護邏輯 topic 信息,造成更多的隨機讀
  • 沒有中心管理節(jié)點,現(xiàn)在看起來并沒有什么用,元數(shù)據(jù)并不多
  • 高精度的延遲消息(快手已支持秒級精度的延遲消息)

Pulsar

  • 存儲、計算分離,方便擴容
    • 存儲:bookkeeper
    • MQ邏輯:無狀態(tài)的 broker 處理

發(fā)展趨勢

  • 云原生
  • 批流一體:跑任務時,需要先把 Kafka 數(shù)據(jù)→HDFS,資源消耗大。如果本來就存在 HDFS,能節(jié)省很大資源
  • Serverless

各公司發(fā)展

  • 快手:Kafka
    • 所有場景均在使用
    • 特殊形態(tài)的讀寫分離
      • 數(shù)據(jù)實時消費到 HDFS
      • 在有明顯 lag 的 consumer 讀取時,broker 把請求從本地磁盤轉發(fā)的 HDFS
      • 不會因為有 lag 的 consumer 對日常讀寫造成明顯的磁盤隨機讀寫
    • 由于自己改造,社區(qū)新功能引入困難
  • 阿里巴巴:開源 RocketMQ
  • 字節(jié)跳動
    • 在線場景:NSQ→RocketMQ
    • 離線場景:Kafka→自研的存儲計算分類的 BMQ(協(xié)議層直接兼容Kafka,用戶可以不換 client)
  • 百度:自研的 BigPipe,不怎么樣
  • 美團:Kafka 架構基礎上用 Java 進行重構,內(nèi)部叫 Mafka
  • 騰訊:部分使用了自研的 PhxQueue,底層是 KV 系統(tǒng)
  • 滴滴:DDMQ
    • 對 RocketMQ 和 Kafka 進行封裝
    • 多機房數(shù)據(jù)一致性可能有問題
  • 小米:自研 Talos
    • 架構類似 pulsar,存儲是 HDFS,讀場景有優(yōu)化

Kafka

Kafka 是什么?

  • 開源的消息引擎系統(tǒng)(消息隊列/消息中間件)
  • 分布式流處理平臺
  • 發(fā)布/訂閱模型
  • 削峰填谷

Kafka 術語

  • Topic:發(fā)布訂閱的主題
  • Producer:向Topic發(fā)布消息的客戶端
  • Consumer:消費者
  • Consumer Group:消費者組,多個消費者共同組成一個組
  • Broker:Kafka的服務進程
  • Replication:備份,相同數(shù)據(jù)拷貝到多臺機器
    • Leader Replica
    • Follower Replica,不與外界交互
  • Partition:分區(qū),解決伸縮性問題,多個Partition組成一個Topic
  • Segment:partition 由多個 segment 組成

Kafka 如何持久化?

  • 消息日志(Log)保存數(shù)據(jù),磁盤追加寫(Append-only)
    • 避免緩慢的隨機I/O操作
    • 高吞吐
  • 定期刪除消息(日志段)

Kafka 文件存儲機制

https://www./lib/view/open1421150566328.html

  • 每個 partition 相當于一個巨型文件→多個大小相等 segment 數(shù)據(jù)文件中
  • 每個 partition 只需要順序讀寫就行了,segment 文件生命周期由配置決定
  • segment file 組成:
    • index file:索引文件
    • data file:數(shù)據(jù)文件
  • segment file 文件命名規(guī)則:
    • 全局第一個 segment 是 0
    • 后序每個加上全局 partition 的最大 offset

一對 segment file

message 物理結構

分區(qū)

為什么分區(qū)?

  • Kafka的消息組織方式:主題-分區(qū)-消息
  • 一條消息,僅存在某一個分區(qū)中
  • 提高伸縮性,不同分區(qū)可以放到不同機器,讀寫操作也是以分區(qū)粒度

分區(qū)策略?

  • 輪詢
  • 隨機
  • 按 key 保序,單分區(qū)有序

Kafka 是否會消息丟失?

  • 只對“已提交”的消息做有限度的持久化保證
    • 已提交的消息:消息寫入日志文件
    • 有限度的持久化保證:N個 broker 至少一個存活
  • 生產(chǎn)者丟失數(shù)據(jù)
    • producer.send(msg) 異步發(fā)送消息,不保證數(shù)據(jù)到達Kafka
    • producer.send(msg, callback) 判斷回調
  • 消費者程序丟失數(shù)據(jù)
    • 應該「先消費消息,后更新位移的順序」
    • 新問題:消息的重復處理
    • 多線程異步處理消息,Consumer不要開啟自動提交位移,應用程序手動提交位移

控制器

  • 在 ZooKeeper幫助下管理和協(xié)調整個 Kafka 集群
  • 運行過程中,只能有一個 Broker 成為控制器

控制器如何選舉?

在 ZooKeeper 創(chuàng)建 /controller 節(jié)點,第一個創(chuàng)建成功的 Broker 被指定為控制器。

控制器有什么用?

  • 主題管理(創(chuàng)建、刪除、增加分區(qū))
  • 分區(qū)重分配
  • 領導者選舉
  • 集群成員管理(新增 Broker、Broker 主動關閉、Broker 宕機)(ZooKeeper 臨時節(jié)點)
  • 數(shù)據(jù)服務:最全的集群元數(shù)據(jù)信息

控制器故障轉移

  • 只有一個 Broker 當控制器,單點失效,立即啟用備用控制器

Kafka 的 ZooKeeper 存儲結構

分布式事務的應用場景

  • 團隊內(nèi)部,某些操作要同時更新多個數(shù)據(jù)源
  • 業(yè)務團隊 A 完成某個操作后,B 業(yè)務的某個操作也必須完成,A 業(yè)務并不能直接訪問 B 的數(shù)據(jù)庫
  • 公司之間,用戶付款后,支付系統(tǒng)(支付寶/微信)必須通知商家的系統(tǒng)更新訂單狀態(tài)

兩階段最終一致

  • 先完成數(shù)據(jù)源 A 的事務(一階段)
  • 成功后通過某種機制,保證數(shù)據(jù)源 B 的事務(二階段)也一定最終完成
    • 不成功,會不斷重試直到成功為止
    • 或達到一定重試次數(shù)后停止(配合對賬、人工處理)

如何保證最終一致?

為了保證最終一致,消息系統(tǒng)和業(yè)務程序需要保證:

  • 消息發(fā)送的一致性:消息發(fā)送時,一階段事務和消息發(fā)送必須同時成功或失敗
  • 消息存儲不丟失:消息發(fā)送成功后,到消息被成功消費前,消息服務器(broker)必須存儲好消息,保證發(fā)生故障時,消息不丟失
  • 消費者不丟失消息:處理失敗不丟棄,重試直到成功為止

消息發(fā)送的一致性如何保證?

目標:本地事務、消息發(fā)送必須同時成功/失敗

問題

  • 先執(zhí)行本地事務,再發(fā)送消息,消息可能發(fā)送失敗
  • 可把失敗的消息放入內(nèi)存,稍后重試,但成功率也無法達到 100%

解決方案`* 先發(fā)送半消息(Half Msg,類似 Prepare 操作),不會投遞給消費者

  • 半消息發(fā)送成功,再執(zhí)行 DB 操作
  • DB 操作執(zhí)行成功后,提交半消息

發(fā)送異常會如何?

  • 1 異常,半消息發(fā)送失敗,本地 DB 沒有執(zhí)行,整個操作失敗,DB/消息的狀態(tài)一致(都沒有提交)
  • 2 異常/超時
    • 生產(chǎn)者以為失敗了,不執(zhí)行 DB
    • broker 存儲半消息成功,等不到后序操作,會詢問生產(chǎn)者是提交還是回滾(第6步)
  • 3 DB操作失敗:生產(chǎn)者在第 4 步告知 broker 回滾半消息
  • 4 提交/回滾半消息失?。篵roker 等不到這個操作,觸發(fā)回查(第 6 步)
  • 5、6、7回查失?。篟ocketMQ 最多回查 15 次

代碼、思維導圖筆記鏈接

代碼和思維導圖在 GitHub 項目中,歡迎大家 star!

coding 筆記、點滴記錄,以后的文章也會同步到公眾號(Coding Insight)中,希望大家關注_

    本站是提供個人知識管理的網(wǎng)絡存儲空間,所有內(nèi)容均由用戶發(fā)布,不代表本站觀點。請注意甄別內(nèi)容中的聯(lián)系方式、誘導購買等信息,謹防詐騙。如發(fā)現(xiàn)有害或侵權內(nèi)容,請點擊一鍵舉報。
    轉藏 分享 獻花(0

    0條評論

    發(fā)表

    請遵守用戶 評論公約

    類似文章 更多