日韩黑丝制服一区视频播放|日韩欧美人妻丝袜视频在线观看|九九影院一级蜜桃|亚洲中文在线导航|青草草视频在线观看|婷婷五月色伊人网站|日本一区二区在线|国产AV一二三四区毛片|正在播放久草视频|亚洲色图精品一区

分享

ocr圖像預(yù)處理...

 黃爸爸好 2021-03-30

說明:文字方向校正(fft方式和放射變換方式)參考了網(wǎng)上的代碼,只做了少量修改
只針對醫(yī)療影像圖像,自然場景下的另說
因?yàn)樘幚淼膱D像都很大很大,居然有11000*12000這種分辨率的,有90M大小,我也是醉了,絕大部分都是6000左右分辨率的圖像,這種圖像直接送到CTPN里的話,效果不是太好,太大了 而且效率感人,所以必須做一下預(yù)處理。大部分的X光圖像很簡單,直接縮放送CTPN即可,而CT和MRI圖像雖然一張上有很多小圖像,但好在要么有虛線分割要么中間都會留有空白的地方,于是就可以利用直線檢測和投影檢測來把圖片分割成若干小圖像了。(吐槽一下之前老外寫的代碼,不管三七二十一把所有圖像都是分成上下兩部分,然后上下再各分成上下兩部分,四個部分再分別循環(huán)他的N個算法,搞的整個系統(tǒng)70%以上的資源都在跑OCR,一張很簡單的圖片最低也要幾分鐘才能出結(jié)果,復(fù)雜一點(diǎn)的都是10幾分鐘 真想知道這是怎么過驗(yàn)收的!)

  1. 圖像分割,思想很簡單 有虛線的直接做直線檢測,有空白的做X、Y軸的投影,都沒有的就是X光圖像了,直接把整張圖像當(dāng)做ROI送CTPN
def _img_split_with_hough(img, min=100, max=220):
    """
    :param img: 讀入的二值化圖
    :param min: 邊緣檢測閾值
    :param max: 邊緣檢測閾值
    :return: 水平和垂直線的坐標(biāo)集合
    """
    h = img.shape[0]
    w = img.shape[1]
    edges = cv2.Canny(img, min, max)
    lines = cv2.HoughLinesP(edges, 1, np.pi / 180, 30, minLineLength=100, maxLineGap=10)
    lines1 = lines[:, 0, :]
    h_line = []
    v_line = []
    for x1, y1, x2, y2 in lines1[:]:
        if y2 == y1:
            flag = False
            for element in h_line:
                if abs(element[1] - y1) < 10:
                    flag = True
                    break
            if flag == False and abs(x1 - x2) > w * 0.5:
                h_line.append((x1, y1, x2, y2))
        elif x1 == x2:
            flag = False
            for element in v_line:
                if abs(element[0] - x1) < 10:
                    flag = True
                    break
            if flag == False and abs(y1 - y2) > h * 0.5:
                v_line.append((x1, y1, x2, y2))
    return h_line, v_line
    
def _img_split_with_shadow(gray_img, threshold_value=180):
    """
    :param binary_img: 讀入的灰度圖
    :param img_show:
    :return: 水平和垂直線的坐標(biāo)集合
    """
    h = gray_img.shape[0]
    w = gray_img.shape[1]

    # 按行求和
    sum_x = np.sum(gray_img, axis=1)
    # 按列求和
    sum_y = np.sum(gray_img, axis=0)

    h_line_index = np.argwhere(sum_x < 10)
    v_line_index = np.argwhere(sum_y < 10)

    h_line_index = np.reshape(h_line_index, (h_line_index.shape[0],))
    v_line_index = np.reshape(v_line_index, (v_line_index.shape[0],))

    h_line = [(0, h_line_index[0], w - 1, h_line_index[0]), (0, h_line_index[-1], w - 1, h_line_index[-1])] if len(
        h_line_index) > 0 else []
    v_line = [(v_line_index[0], 0, v_line_index[0], h - 1), (v_line_index[-1], 0, v_line_index[-1], h - 1)] if len(
        v_line_index) > 0 else []

    for i in range(len(h_line_index) - 1):
        if h_line_index[i + 1] - h_line_index[i] > 2:
            h_line.append((0, h_line_index[i], w - 1, h_line_index[i]))

    for i in range(len(v_line_index) - 1):
        if v_line_index[i + 1] - v_line_index[i] > 2:
            v_line.append((v_line_index[i], 0, v_line_index[i], h - 1))

    return h_line, v_line


def _combine_rect(h_lines, v_lines, w, h):
    rects = []
    # 添加第一行(列)和最后一行(列)
    x_axis = sorted(set([0, w - 1] + [item[0] for item in v_lines]))
    y_axis = sorted(set([0, h - 1] + [item[1] for item in h_lines]))

    point_list = []
    for y in y_axis:
        point = []
        for x in x_axis:
            point.append((y, x))
        point_list.append(point)

    for y_index in range(len(y_axis) - 1):
        if y_axis[y_index + 1] - y_axis[y_index] <= 10:
            continue
        for x_index in range(len(x_axis) - 1):
            if x_axis[x_index + 1] - x_axis[x_index] <= 10:
                continue
            rects.append((y_axis[y_index], x_axis[x_index],
                          y_axis[y_index + 1], x_axis[x_index + 1]))
    return rects


def img_split(img_file, threshold_value=180, img_show=False):
    """

    :param img_file: 輸入圖片路徑
    :param img_show: 是否顯示
    :return: 分割后的子圖像rect列表
    """
    img = cv2.imread(img_file, 1)
    gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    gray = color_nomal(gray)
    # ret, binary = cv2.threshold(gray, threshold_value, 255, cv2.THRESH_BINARY)
    h = img.shape[0]
    w = img.shape[1]
    rate = h // w if h > w else w // h

    h_line, v_line = _img_split_with_shadow(gray)
    if len(h_line) < 1 and len(v_line) < 1:
        h_line, v_line = _img_split_with_hough(gray)

    rects = _combine_rect(h_line, v_line, w, h)
    split_imgs = []
    for rect in rects:
        split_imgs.append(img[rect[0]:rect[2], rect[1]:rect[3]])

    if img_show:
        for rect in rects:
            cv2.rectangle(img, (rect[1], rect[0]), (rect[3], rect[2]), (0, 255, 0), 2)        
        img = cv2.resize(img, (int(h * 0.7), int(h * 0.7 / rate)))
        cv2.imshow('cece', img)
        cv2.waitKey()
    return split_imgs

分割結(jié)果
這里寫圖片描述

這里寫圖片描述
這里寫圖片描述
2. 文字方向校正,可以使用FFT變換后校正然后再逆變換回來,也可以直接使用查找包含文字區(qū)域的矩形,旋轉(zhuǎn)這個矩形,但是這種方法對于垂直的圖像就沒效果了,因?yàn)闀l(fā)現(xiàn)包含文字的矩形區(qū)域就是方方正正的 不用校正。在二值化的時(shí)候采用了自適應(yīng)二值化,這樣做的好處是能更精確的定位文字區(qū)域,全局二值化可能會造成有些地方一團(tuán)黑。

def rotated_img_with_fft(gray):
    # 圖像延擴(kuò)
    h, w = gray.shape[:2]
    new_h = cv2.getOptimalDFTSize(h)
    new_w = cv2.getOptimalDFTSize(w)
    right = new_w - w
    bottom = new_h - h
    nimg = cv2.copyMakeBorder(gray, 0, bottom, 0, right, borderType=cv2.BORDER_CONSTANT, value=0)

    # 執(zhí)行傅里葉變換,并過得頻域圖像
    f = np.fft.fft2(nimg)
    fshift = np.fft.fftshift(f)

    fft_img = np.log(np.abs(fshift))
    fft_img = (fft_img - np.amin(fft_img)) / (np.amax(fft_img) - np.amin(fft_img))

    fft_img *= 255
    ret, thresh = cv2.threshold(fft_img, 150, 255, cv2.THRESH_BINARY)

    # 霍夫直線變換
    thresh = thresh.astype(np.uint8)
    lines = cv2.HoughLinesP(thresh, 1, np.pi / 180, 30, minLineLength=40, maxLineGap=100)
    try:
        lines1 = lines[:, 0, :]
    except Exception as e:
        lines1 = []

    # 創(chuàng)建一個新圖像,標(biāo)注直線
    # lineimg = np.ones(nimg.shape,dtype=np.uint8)
    # lineimg = lineimg * 255

    piThresh = np.pi / 180
    pi2 = np.pi / 2
    angle = 0
    for line in lines1:
        # x1, y1, x2, y2 = line[0]
        x1, y1, x2, y2 = line
        # cv2.line(lineimg, (x1, y1), (x2, y2), (0, 255, 0), 2)
        if x2 - x1 == 0:
            continue
        else:
            theta = (y2 - y1) / (x2 - x1)
        if abs(theta) < piThresh or abs(theta - pi2) < piThresh:
            continue
        else:
            angle = abs(theta)
            break
    
    angle = math.atan(angle)
    angle = angle * (180 / np.pi)
    print(angle)
    # cv2.imshow("line image", lineimg)
    center = (w // 2, h // 2)
    height_1 = int(w * fabs(sin(radians(angle))) + h * fabs(cos(radians(angle))))
    width_1 = int(h * fabs(sin(radians(angle))) + w * fabs(cos(radians(angle))))
    M = cv2.getRotationMatrix2D(center, angle, 1.0)
    M[0, 2] += (width_1 - w) / 2
    M[1, 2] += (height_1 - h) / 2
    rotated = cv2.warpAffine(gray, M, (width_1, height_1), flags=cv2.INTER_CUBIC, borderMode=cv2.BORDER_REPLICATE)
    cv2.imshow('rotated', rotated)
    cv2.waitKey(0)
    return rotated


def rotated_img_with_radiation(gray, is_show=False):
    thresh = cv2.adaptiveThreshold(gray, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY_INV, 11, 2)
    if is_show:
        cv2.imshow('thresh', thresh)
    # 計(jì)算包含了旋轉(zhuǎn)文本的最小邊框
    coords = np.column_stack(np.where(thresh > 0))

    # 該函數(shù)給出包含著整個文字區(qū)域矩形邊框,這個邊框的旋轉(zhuǎn)角度和圖中文本的旋轉(zhuǎn)角度一致
    angle = cv2.minAreaRect(coords)[-1]
    print(angle)
    # 調(diào)整角度
    if angle < -45:
        angle = -(90 + angle)
    else:
        angle = -angle
    # 仿射變換
    h, w = gray.shape[:2]
    center = (w // 2, h // 2)
    print(angle)
    M = cv2.getRotationMatrix2D(center, angle, 1.0)
    rotated = cv2.warpAffine(gray, M, (w, h), flags=cv2.INTER_CUBIC, borderMode=cv2.BORDER_REPLICATE)
    if is_show:        
        cv2.putText(rotated, 'Angle: {:.2f} degrees'.format(angle), (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 0.7,
                    (0, 0, 255), 2)
        print('[INFO] angel :{:.3f}'.format(angle))
        cv2.imshow('Rotated', rotated)
        cv2.waitKey()
    return rotated

這里寫圖片描述
放射校正結(jié)果:
這里寫圖片描述
原圖:

放射校正:

fft校正,計(jì)算的時(shí)候有大概2度的誤差

    本站是提供個人知識管理的網(wǎng)絡(luò)存儲空間,所有內(nèi)容均由用戶發(fā)布,不代表本站觀點(diǎn)。請注意甄別內(nèi)容中的聯(lián)系方式、誘導(dǎo)購買等信息,謹(jǐn)防詐騙。如發(fā)現(xiàn)有害或侵權(quán)內(nèi)容,請點(diǎn)擊一鍵舉報(bào)。
    轉(zhuǎn)藏 分享 獻(xiàn)花(0

    0條評論

    發(fā)表

    請遵守用戶 評論公約