大家好,我是痞子衡,是正經(jīng)搞技術的痞子。今天痞子衡給大家介紹的是飛思卡爾Kinetis系列MCU的KBOOT架構。 Bootloader是嵌入式MCU開發(fā)里很常見的一種專用的應用程序,在一個沒有Bootloader的嵌入式系統(tǒng)里如果要更新Application,只能通過外部硬件調試器/下載器,而如果有了Bootloader,我們可以輕松完成Application的更新升級以及加載啟動,除此以外在Bootloader中還可以引入更多高級特性,比如Application完整性檢測、可靠升級、加密特性等。 KBOOT是設計運行于Kinetis芯片上的一種Bootloader,KBOOT由飛思卡爾(現(xiàn)恩智浦)官方推出,其功能非常全面,今天痞子衡就為你揭開KBOOT的神秘面紗: 一、KBOOT由來 飛思卡爾Kinetis系列MCU是從2010年開始推出的,早期的Kinetis產(chǎn)品比如MK60, MKL25并沒有配套標準Bootloader功能,不過可以從飛思卡爾官網(wǎng)上找到很多風格迥異的Bootloader參考設計,比如AN2295(UART型)、AN4655(I2C型)、AN4379(USB-MSD型)等,這些Bootloader參考方案都是不同的飛思卡爾應用工程師設計的,因此所用的通信協(xié)議以及上位機工具都不相同,雖然這些AN一定程度上能解決客戶使用Bootloader的需求,但是在Bootloader后續(xù)維護升級以及拓展性方面有一定缺陷。 飛思卡爾也逐漸意識到了這一點,為了完善軟件生態(tài)建設與服務質量,于是在2013年初組建了一支專門開發(fā)Kinetis Bootloader的軟件團隊,即KBOOT Team,這個Team成立的目的就是要開發(fā)出一個Unified Kinetis Bootloader(簡稱KBOOT),這個bootloader必須擁有良好的架構,易于擴展和維護,功能全面且經(jīng)過完善的驗證。 KBOOT項目發(fā)展至今(2017)已近5年,目前被廣泛應用于主流Kinetis芯片上,是Kinetis芯片集成Bootloader的首選,其官方主頁是 www.nxp.com/kboot 二、KBOOT架構 從架構角度來分析KBOOT,拋開各種附加特性,其實KBOOT最核心的就是這三大組件:Peripheral Interface、Command & Data Processor、Memory Interface,如下圖所示: 
2.1 Peripheral Interface KBOOT首要功能是能夠與Host進行數(shù)據(jù)傳輸,我們知道數(shù)據(jù)傳輸接口種類有很多,KBOOT設計上可同時支持多種常見傳輸接口(UART, SPI, I2C, USB-HID, CAN),為此KBOOT在Peripheral Interface組件中抽象了Peripheral的行為(byte/packet層傳輸?shù)龋?,使得在Peripheral種類拓展上更容易。 KBOOT中使用一個名叫g_peripherals[]的結構體數(shù)組來集合所有外設,下面示例僅包含UART, USB: //! @brief Peripheral array. const peripheral_descriptor_t g_peripherals[] = { #if BL_CONFIG_LPUART_0 // LPUART0 {.typeMask = kPeripheralType_UART, .instance = 0, .pinmuxConfig = uart_pinmux_config, .controlInterface = &g_lpuartControlInterface, .byteInterface = &g_lpuartByteInterface, .packetInterface = &g_framingPacketInterface }, #endif // BL_CONFIG_LPUART_0
#if BL_CONFIG_USB_HID // USB HID {.typeMask = kPeripheralType_USB_HID, .instance = 0, .pinmuxConfig = NULL, .controlInterface = &g_usbHidControlInterface, .byteInterface = NULL, .packetInterface = &g_usbHidPacketInterface }, #endif // BL_CONFIG_USB_HID
{ 0 } // Terminator };
如下便是用于抽象外設行為的Peripheral descriptor原型,該原型可以描述所有類型的peripheral: //! @brief Peripheral descriptor. //! //! Instances of this struct describe a particular instance of a peripheral that is //! available for bootloading. typedef struct PeripheralDescriptor { //! @brief Bit mask identifying the peripheral type. //! See #_peripheral_types for a list of valid bits. // 外設的類型名,KBOOT用于識別當前外設的類型 uint32_t typeMask;
//! @brief The instance number of the peripheral. // 外設的編號,KBOOT可以支持同一外設的多個實例 uint32_t instance;
//! @brief Configure pinmux setting for the peripheral. // 外設的I/O初始化 void (*pinmuxConfig)(uint32_t instance, pinmux_type_t pinmux);
//! @brief Control interface for the peripheral. // 外設的行為控制 const peripheral_control_interface_t *controlInterface;
//! @brief Byte-level interface for the peripheral. //! May be NULL since not all periperhals support this interface. // 外設的byte級別傳輸控制 const peripheral_byte_inteface_t *byteInterface;
//! @brief Packet level interface for the peripheral. // 外設的packet級別傳輸控制 const peripheral_packet_interface_t *packetInterface; } peripheral_descriptor_t;
//! @brief Peripheral control interface. typedef struct _peripheral_control_interface { // 檢測是否外設是否被激活 bool (*pollForActivity)(const peripheral_descriptor_t *self); // 外設IP底層初始化 status_t (*init)(const peripheral_descriptor_t *self, serial_byte_receive_func_t function); // 外設IP底層恢復 void (*shutdown)(const peripheral_descriptor_t *self); // 特殊外設pump控制(比如USB-MSC, DFU等) void (*pump)(const peripheral_descriptor_t *self); } peripheral_control_interface_t;
//! @brief Peripheral abstract byte interface. typedef struct _peripheral_byte_inteface { // byte傳輸初始化,一般為NULL status_t (*init)(const peripheral_descriptor_t *self); // byte發(fā)送 status_t (*write)(const peripheral_descriptor_t *self, const uint8_t *buffer, uint32_t byteCount); } peripheral_byte_inteface_t;
//! @brief Peripheral Packet Interface. typedef struct _peripheral_packet_interface { // packet傳輸初始化 status_t (*init)(const peripheral_descriptor_t *self); // 接收一包packet status_t (*readPacket)(const peripheral_descriptor_t *self, uint8_t **packet, uint32_t *packetLength, packet_type_t packetType); // 發(fā)送一包packet status_t (*writePacket)(const peripheral_descriptor_t *self, const uint8_t *packet, uint32_t byteCount, packet_type_t packetType); // 立即終止當前packet void (*abortDataPhase)(const peripheral_descriptor_t *self); // 完成當前packet status_t (*finalize)(const peripheral_descriptor_t *self); // 獲取最大packet包長 uint32_t (*getMaxPacketSize)(const peripheral_descriptor_t *self); // byte接收callback void (*byteReceivedCallback)(uint8_t byte); } peripheral_packet_interface_t;
2.2 Memory Interface KBOOT其次功能是能夠讀寫存儲空間,Kinetis上涉及的存儲空間包括內部SRAM, Flash,Register、I/O以及外部QuadSPI NOR Flash(可以映射在MCU內部存儲空間),為此KBOOT在Memory Interface組件中抽象了Memory的行為(read/write/erase等),使得在Memory種類拓展上更容易。 KBOOT中使用一個名叫g_memoryMap[]的結構體數(shù)組來集合所有存儲空間,下面示例包含了典型的存儲空間(Flash、RAM、Register、I/O、QSPI NOR Flash): //! @brief Memory map. //! //! This map is not const because it is updated at runtime with the actual sizes of //! flash and RAM for the chip we're running on. //! @note Do not change the index of Flash, SRAM, or QSPI (see memory.h). memory_map_entry_t g_memoryMap[] = { { 0x00000000, 0x0003ffff, kMemoryIsExecutable, &g_flashMemoryInterface }, // Flash array (256KB) { 0x1fff0000, 0x2002ffff, kMemoryIsExecutable, &g_normalMemoryInterface }, // SRAM (256KB) { 0x68000000, 0x6fffffff, kMemoryNotExecutable, &g_qspiMemoryInterface }, // QSPI memory { 0x04000000, 0x07ffffff, kMemoryNotExecutable, &g_qspiAliasAreaInterface }, // QSPI alias area { 0x40000000, 0x4007ffff, kMemoryNotExecutable, &g_deviceMemoryInterface }, // AIPS0 peripherals { 0x40080000, 0x400fefff, kMemoryNotExecutable, &g_deviceMemoryInterface }, // AIPS1 peripherals { 0x400ff000, 0x400fffff, kMemoryNotExecutable, &g_deviceMemoryInterface }, // GPIO { 0xe0000000, 0xe00fffff, kMemoryNotExecutable, &g_deviceMemoryInterface }, // M4 private peripherals { 0 } // Terminator };
如下便是用于抽象存儲器操作的memory_map_entry原型,該原型可以描述所有類型的memory: //! @brief Structure of a memory map entry. typedef struct _memory_map_entry { // 存儲空間起始地址 uint32_t startAddress; // 存儲空間結束地址 uint32_t endAddress; // 存儲空間屬性(Flash/RAM,是否能XIP) uint32_t memoryProperty; // 存儲空間操作接口 const memory_region_interface_t *memoryInterface; } memory_map_entry_t;
typedef struct _memory_region_interface { // 存儲空間(IP控制器)初始化 status_t (*init)(void); // 從存儲空間指定范圍內讀取數(shù)據(jù) status_t (*read)(uint32_t address, uint32_t length, uint8_t *buffer); // 將數(shù)據(jù)寫入存儲空間指定范圍內 status_t (*write)(uint32_t address, uint32_t length, const uint8_t *buffer); // 將pattern填充入存儲空間指定范圍內 status_t (*fill)(uint32_t address, uint32_t length, uint32_t pattern); // 對于支持page/section編程的存儲器做一次page/section數(shù)據(jù)寫入 status_t (*flush)(void); // 將存儲空間指定范圍內容擦除 status_t (*erase)(uint32_t address, uint32_t length); } memory_region_interface_t;
2.3 Command & Data Processor KBOOT核心功能便是與Host之間的命令交互,KBOOT主要工作于Slave模式,實時監(jiān)聽來自Host的命令并做出響應,KBOOT僅能識別事先規(guī)定好的命令格式,因此KBOOT必須配套一個專用上位機工具使用。你可能會疑問,為什么這個組件又叫Data Processor?因為有些命令是含有Data phase的(比如read memory, write memory),對于這些命令時除了基本的命令交互響應之后,還必須有數(shù)據(jù)傳輸交互響應。 KBOOT中使用如下名叫g_commandInterface和g_commandHandlerTable[]的結構變量來實現(xiàn)核心命令交互,KBOOT中一共實現(xiàn)了19條命令: // See bl_command.h for documentation on this interface. command_interface_t g_commandInterface = { bootloader_command_init, bootloader_command_pump, (command_handler_entry_t *)&g_commandHandlerTable, &g_commandData };
//! @brief Command handler table. const command_handler_entry_t g_commandHandlerTable[] = { // cmd handler // data handler or NULL { handle_flash_erase_all, NULL }, // kCommandTag_FlashEraseAll = 0x01 { handle_flash_erase_region, NULL }, // kCommandTag_FlashEraseRegion = 0x02 { handle_read_memory, handle_data_producer }, // kCommandTag_ReadMemory = 0x03 { handle_write_memory, handle_data_consumer }, // kCommandTag_WriteMemory = 0x04 { handle_fill_memory, NULL }, // kCommandTag_FillMemory = 0x05 { handle_flash_security_disable, NULL }, // kCommandTag_FlashSecurityDisable = 0x06 { handle_get_property, NULL }, // kCommandTag_GetProperty = 0x07 { handle_receive_sb_file, handle_data_consumer }, // kCommandTag_ReceiveSbFile = 0x08 { handle_execute, NULL }, // kCommandTag_Execute = 0x09 { handle_call, NULL }, // kCommandTag_Call = 0x0a { handle_reset, NULL }, // kCommandTag_Reset = 0x0b { handle_set_property, NULL }, // kCommandTag_SetProperty = 0x0c { handle_flash_erase_all_unsecure, NULL }, // kCommandTag_FlashEraseAllUnsecure = 0x0d { handle_flash_program_once, NULL }, // kCommandTag_ProgramOnce = 0x0e { handle_flash_read_once, NULL }, // kCommandTag_ReadOnce = 0x0f { handle_flash_read_resource, handle_data_producer }, // kCommandTag_ReadResource = 0x10 { handle_configure_memory, NULL }, // kCommandTag_ConfigureMemory = 0x11 { handle_reliable_update, NULL }, // kCommandTag_ReliableUpdate = 0x12 { handle_generate_key_blob, handle_key_blob_data }, // kCommandTag_GenerateKeyBlob = 0x13 };
如下便是用于核心命令交互的Command interface原型: //! @brief Interface to command processor operations. typedef struct CommandInterface { // command處理控制單元初始化 status_t (*init)(void); // command處理控制單元pump status_t (*pump)(void); // command服務函數(shù)查找表 const command_handler_entry_t *handlerTable; // command處理控制單元狀態(tài)數(shù)據(jù) command_processor_data_t *stateData; } command_interface_t;
//! @brief Format of command handler entry. typedef struct CommandHandlerEntry { // command服務函數(shù) void (*handleCommand)(uint8_t *packet, uint32_t packetLength); // command的data級處理函數(shù)(只有少部分command有此函數(shù)) status_t (*handleData)(bool *hasMoreData); } command_handler_entry_t;
//! @brief Command processor data format. typedef struct CommandProcessorData { // command處理控制狀態(tài)機當前狀態(tài)(command/data兩種狀態(tài)) int32_t state; // 指向當前處理的packet地址 uint8_t *packet; // 當前處理的packet長度 uint32_t packetLength; // command的data級處理控制狀態(tài)數(shù)據(jù) struct DataPhase { uint8_t *data; //!< Data for data phase uint32_t count; //!< Remaining count to produce/consume uint32_t address; //!< Address for data phase uint32_t memoryId; //!< ID of the target memory uint32_t dataBytesAvailable; //!< Number of bytes available at data pointer uint8_t commandTag; //!< Tag of command running data phase uint8_t option; //!< option for special command } dataPhase; // 指向command服務函數(shù)查找表地址 const command_handler_entry_t *handlerEntry; //! Pointer to handler table entry for packet in process } command_processor_data_t;
至此,飛思卡爾Kinetis系列MCU的KBOOT架構痞子衡便介紹完畢了,掌聲在哪里~~~
|