日韩黑丝制服一区视频播放|日韩欧美人妻丝袜视频在线观看|九九影院一级蜜桃|亚洲中文在线导航|青草草视频在线观看|婷婷五月色伊人网站|日本一区二区在线|国产AV一二三四区毛片|正在播放久草视频|亚洲色图精品一区

分享

導(dǎo)數(shù)的運算法則及基本公式應(yīng)用

 高中各科知識 2019-12-20

高考要求

導(dǎo)數(shù)是中學(xué)限選內(nèi)容中較為重要的知識,本節(jié)內(nèi)容主要是在導(dǎo)數(shù)的定義,常用求等公式 四則運算求導(dǎo)法則和復(fù)合函數(shù)求導(dǎo)法則等問題上對考生進行訓(xùn)練與指導(dǎo)

重難點歸納

1 深刻理解導(dǎo)數(shù)的概念,了解用定義求簡單的導(dǎo)數(shù)

表示函數(shù)的平均改變量,它是Δx的函數(shù),而f′(x0)表示一個數(shù)值,即f′(x)=,知道導(dǎo)數(shù)的等價形式

2 求導(dǎo)其本質(zhì)是求極限,在求極限的過程中,力求使所求極限的結(jié)構(gòu)形式轉(zhuǎn)化為已知極限的形式,即導(dǎo)數(shù)的定義,這是順利求導(dǎo)的關(guān)鍵

3 對于函數(shù)求導(dǎo),一般要遵循先化簡,再求導(dǎo)的基本原則,求導(dǎo)時,不但要重視求導(dǎo)法則的應(yīng)用,而且要特別注意求導(dǎo)法則對求導(dǎo)的制約作用,在實施化簡時,首先必須注意變換的等價性,避免不必要的運算失誤

4 復(fù)合函數(shù)求導(dǎo)法則,像鏈條一樣,必須一環(huán)一環(huán)套下去,而不能丟掉其中的一環(huán) 必須正確分析復(fù)合函數(shù)是由哪些基本函數(shù)經(jīng)過怎樣的順序復(fù)合而成的,分清其間的復(fù)合關(guān)系

典型題例示范講解

例1求函數(shù)的導(dǎo)數(shù)

命題意圖 本題3個小題分別考查了導(dǎo)數(shù)的四則運算法則,復(fù)合函數(shù)求導(dǎo)的方法,以及抽象函數(shù)求導(dǎo)的思想方法 這是導(dǎo)數(shù)中比較典型的求導(dǎo)類型

知識依托 解答本題的閃光點是要分析函數(shù)的結(jié)構(gòu)和特征,挖掘量的隱含條件,將問題轉(zhuǎn)化為基本函數(shù)的導(dǎo)數(shù)

錯解分析 本題難點在求導(dǎo)過程中符號判斷不清,復(fù)合函數(shù)的結(jié)構(gòu)分解為基本函數(shù)出差錯

技巧與方法 先分析函數(shù)式結(jié)構(gòu),找準(zhǔn)復(fù)合函數(shù)的式子特征,按照求導(dǎo)法則進行求導(dǎo)

(2)解 y=μ3,μ=axbsin2ωx,μ=avby

v=x,y=sinγ γx

y′=(μ3)′=3μ2·μ′=3μ2(avby)′=3μ2(av′-by′)=3μ2(av′-byγ′)

=3(axbsin2ωx)2(abωsin2ωx)

(3)解法一 設(shè)y=f(μ),μ=,v=x2+1,則yx=yμμv·vx=f′(μv·2x

=f′()··2=

解法二 y′=[f()]′=f′()·()′

=f′()·(x2+1)·(x2+1)′=f′()·(x2+1) ·2x

=f′()

例2利用導(dǎo)數(shù)求和

(1)Sn=1+2x+3x2+…+nxn-1(x≠0,nN*)

(2)Sn=C+2C+3C+…+nC,(nN*)

命題意圖 培養(yǎng)考生的思維的靈活性以及在建立知識體系中知識點靈活融合的能力

知識依托 通過對數(shù)列的通項進行聯(lián)想,合理運用逆向思維 由求導(dǎo)公式(xn)′=nxn-1,可聯(lián)想到它們是另外一個和式的導(dǎo)數(shù) 關(guān)鍵要抓住數(shù)列通項的形式結(jié)構(gòu)

錯解分析 本題難點是考生易犯思維定勢的錯誤,受此影響而不善于聯(lián)想

技巧與方法 第(1)題要分x=1和x≠1討論,等式兩邊都求導(dǎo)

解 (1)當(dāng)x=1時Sn=1+2+3+…+n=n(n+1);

當(dāng)x≠1時,∵x+x2+x3+…+xn=,兩邊都是關(guān)于x的函數(shù),求導(dǎo)得

(x+x2+x3+…+xn)′=()′即Sn=1+2x+3x2+…+nxn-1=

(2)∵(1+x)n=1+Cx+Cx2+…+Cxn,

兩邊都是關(guān)于x的可導(dǎo)函數(shù),求導(dǎo)得n(1+x)n-1=C+2Cx+3Cx2+…+nCxn-1,

x=1得,n·2n-1=C+2C+3C+…+nC,即Sn=C+2C+…+nC=n·2n-1

例3 已知曲線C y=x3-3x2+2x,直線l:y=kx,且lC切于點(x0,y0)(x0≠0),求直線l的方程及切點坐標(biāo)

解 由l過原點,知k=(x0≠0),點(x0,y0)在曲線C上,y0=x03-3x02+2x0,

∴=x02-3x0+2 y′=3x2-6x+2,k=3x02-6x0+2又k=,∴3x02-6x0+2=x02-3x0+2

2x02-3x0=0,∴x0=0或x0= 由x≠0,知x0= ∴y0=()3-3()2+2·=-

k==- ∴l方程y=-x 切點(,-)

來源:網(wǎng)絡(luò),如有侵權(quán),請及時聯(lián)系管理員刪除

    本站是提供個人知識管理的網(wǎng)絡(luò)存儲空間,所有內(nèi)容均由用戶發(fā)布,不代表本站觀點。請注意甄別內(nèi)容中的聯(lián)系方式、誘導(dǎo)購買等信息,謹(jǐn)防詐騙。如發(fā)現(xiàn)有害或侵權(quán)內(nèi)容,請點擊一鍵舉報。
    轉(zhuǎn)藏 分享 獻花(0

    0條評論

    發(fā)表

    請遵守用戶 評論公約

    類似文章 更多