日韩黑丝制服一区视频播放|日韩欧美人妻丝袜视频在线观看|九九影院一级蜜桃|亚洲中文在线导航|青草草视频在线观看|婷婷五月色伊人网站|日本一区二区在线|国产AV一二三四区毛片|正在播放久草视频|亚洲色图精品一区

分享

基于貝葉斯估計的概率公式推導

 dbn9981 2019-12-14

統(tǒng)計學習方法第四章貝葉斯估計題

參考1:https://blog.csdn.net/bumingqiu/article/details/73397812

參考2:https://blog.csdn.net/bitcarmanlee/article/details/82156281


 

、第一個公式:

p(Y=c_{k} )=\frac{\lambda+\sum_{i=1}^{N} {I(y_{i}=c_{k})}}{N+K\lambda}, (1)

其中,c_{k}為第k種類別,共有K種;N為樣本數(shù)目;

證:

p(Y=c_{i})=\pi_{i},i\in [1,K],且(\pi_{1},\pi_{2},...,\pi_{K})服從參數(shù)為\lambda的Dirichlet分布(先驗分布),則有概率質(zhì)量函數(shù)(即離散變量的概率密度函數(shù))如下:

\large p(\pi_{1},\pi_{2},...,\pi_{K})=\frac{1}{B(\lambda)}\prod_{i=1}^{K}\pi_{i}^{\lambda-1},(2);

(2)式可改寫成:

\large p(\pi_{1},\pi_{2},...,\pi_{K})\propto \prod_{i=1}^{K}\pi_{i}^{\lambda-1},(3)

M_{j},j\in[1,K]為各類別的觀測數(shù),有:

M_{j}=\sum_{i=1}^{N}I(y_{i}=c_{j}),j\in[1,K],(4)

則根據(jù)觀測數(shù)據(jù)對先驗分布改進如下:

\large p(\overrightarrow{\pi}|\overrightarrow{M})=\frac{p(\overrightarrow{M}|\overrightarrow{\pi})p(\overrightarrow{\pi})}{p(\overrightarrow{M})},(5)

其中,\large \overrightarrow{\pi}=(\pi_{1},\pi_{2},...,\pi_{K}),\overrightarrow{M}=(M_{1},M_{2},...,M_{K}),又\large p(\overrightarrow{M})是與\large \pi無關(guān)的量,故(5)式可寫為:

\large p(\overrightarrow{\pi}|\overrightarrow{M})\propto p(\overrightarrow{M}|\overrightarrow{\pi})p(\overrightarrow{\pi}),(6)

\large p(\overrightarrow{M}|\overrightarrow{\pi})服從多項分布,則有:

\large p(\overrightarrow{M}|\overrightarrow{\pi})=\frac{N!}{\prod_{j=1}^{K}M_{j}!}\prod_{j=1}^{K}\pi_{j}^{M_{j}},j\in[1,K],(7)

(7)式可改寫成:

\large p(\overrightarrow{M}|\overrightarrow{\pi})\propto \prod_{j=1}^{K}\pi_{j}^{M_{j}},j\in[1,K],(8)

將(3)式和(8)式帶入(6)式,可得:

\large p(\overrightarrow{\pi}|\overrightarrow{M})\propto \prod_{j=1}^{K}\pi_{j}^{M_{j}+\lambda-1},(9)

因此得出結(jié)論,\large \overrightarrow{\pi}的后驗概率\large p(\overrightarrow{\pi}|\overrightarrow{M})服從參數(shù)為\large M_{j}+\lambda的Dirichlet分布:

\large \overrightarrow{\pi}的期望有(Dirichlet分布期望公式):

\large E(\overrightarrow{\pi})=(\frac{M_{1}+\lambda}{\sum_{j=1}^{K}(M_{j}+\lambda)},\frac{M_{2}+\lambda}{\sum_{j=1}^{K}(M_{j}+\lambda)},...,\frac{M_{K}+\lambda}{\sum_{j=1}^{K}(M_{j}+\lambda)}),(10)

即有:

\large E(\pi_{j})=\frac{M_{j}+\lambda}{\sum_{j=1}^{K}(M_{j}+\lambda)}\Leftrightarrow p(Y=c_{k})=\frac{\sum_{i=1}^{N}I(y_{i}=c_{k})+\lambda}{N+K\lambda},(11)

故原式得證。


二、第二個公式

p(X^{j}=a_{jl_{j}}|Y=c_{k})=\frac{\sum_{i=1}^{N}I(x_{i}^{j}=a_{jl_{j}},y_{i}=c_{k})+\lambda}{\sum_{i=1}^{N}I(y_{i}=c_{k})+S_{j}\lambda},j\in[1,n],l_{j}\in[1,S_{j}],k\in[1,K],(1)

其中,X_{i}^{j}表示第i個樣本的第j維特征值,S_{j}表示第j維特征可取值個數(shù),n表示特征維數(shù),K表示類別數(shù),N為樣本數(shù);

證明:

參考第一個公式的證明,設:

p(X^{j}=a_{jl_{j}}|Y=c_{k})=\pi_{l_{j}},l_{j}\in[1,S_{j}],且(\pi_{1},\pi_{2},...,\pi_{S_{j}})服從參數(shù)為\lambda的Dirichlet分布(先驗分布),則有概率質(zhì)量函數(shù)(即離散變量的概率密度函數(shù))如下:

 

\large p(\pi_{1},\pi_{2},...,\pi_{S_{j}})=\frac{1}{B(\lambda)}\prod_{l_{j}=1}^{S_{j}}\pi_{l_{j}}^{\lambda-1},(2)

(2)是可改寫為:

\large p(\pi_{1},\pi_{2},...,\pi_{S_{j}})\propto \prod_{l_{j}=1}^{S_{j}}\pi_{l_{j}}^{\lambda-1},(3)

M_{jl_{j}},j\in[1,n]為第j維度l_{j}種特征值的觀測數(shù),有:

M_{jl_j}}=\sum_{i=1}^{N}I(x_{i}^{j}=a_{jl_{j}},y_{i}=c_{k}),j\in[1,n],l_{j}\in[1,S_{j}],(4)

根據(jù)觀測數(shù)據(jù)對(3)式進行改進如下:

\large p(\overrightarrow{\pi}|\overrightarrow{M})=\frac{p(\overrightarrow{M}|\overrightarrow{\pi})p(\overrightarrow{\pi})}{p(\overrightarrow{M})},(5)

其中,\large \overrightarrow{\pi}=(\pi_{1},\pi_{2},...,\pi_{S_{j}}),\overrightarrow{M}=(M_{j1},M_{j1},...,M_{jS_{j}}),又\large p(\overrightarrow{M})是與\large \pi無關(guān)的量,故(5)式可寫為:

\large p(\overrightarrow{\pi}|\overrightarrow{M})\propto p(\overrightarrow{M}|\overrightarrow{\pi})p(\overrightarrow{\pi}),(6)

\large p(\overrightarrow{M}|\overrightarrow{\pi})服從多項分布,則有:

\large p(\overrightarrow{M}|\overrightarrow{\pi})=\frac{\Gamma (\sum_{i=1}^{N}I(y_{i}=c_{k}))}{\prod_{l_{j}=1}^{S_{j}}\Gamma (M_{jl_{j}})}\prod_{l_{j}=1}^{S_{j}}\pi_{l_{j}}^{M_{jl_{j}}},j\in[1,n],l_{j}\in[1,S_{j}],(7)

(7)式可改寫為:

\large p(\overrightarrow{M}|\overrightarrow{\pi})\propto \prod_{l_{j}=1}^{S_{j}}\pi_{l_{j}}^{M_{jl_{j}}},j\in[1,n],l_{j}\in[1,S_{j}],(8)

將(3)式和(8)式帶入(6)式,則有:

\large p(\overrightarrow{\pi}|\overrightarrow{M})\propto \prod_{l_{j}=1}^{S_{j}}\pi_{l_{j}}^{M_{jl_{j}}+\lambda-1},(9)

因此得出結(jié)論,\large \overrightarrow{\pi}的后驗概率\large p(\overrightarrow{\pi}|\overrightarrow{M})服從參數(shù)為\large M_{jl_{j}}+\lambda的Dirichlet分布:

\large \overrightarrow{\pi}的期望有(Dirichlet分布期望公式):

\large E(\overrightarrow{\pi})=(\frac{M_{i1}+\lambda}{\sum_{l_{j}=1}^{S_{j}}(M_{jl_{j}}+\lambda)},\frac{M_{j2}+\lambda}{\sum_{l_{j}=1}^{S_{j}}(M_{jl_{j}}+\lambda)},...,\frac{M_{jS_{j}}+\lambda}{\sum_{l_{j}=1}^{S_{j}}(M_{jl_{j}}+\lambda)}),(10)

即有:

\large E(\pi_{l_{j}})=\frac{M_{jS_{j}}+\lambda}{\sum_{l_{j}=1}^{S_{j}}(M_{jl_{j}}+\lambda)}\Leftrightarrow p(X^{j}=a_{jl_{j}}|Y=c_{k})=\frac{\sum_{i=1}^{N}I(x_{i}^{j}=a_{jl_{j}},y_{i}=c_{k})+\lambda}{\sum_{i=1}^{N}I(y_{i}=c_{k})+S_{j}\lambda},(11)

于是,原式得證。

    本站是提供個人知識管理的網(wǎng)絡存儲空間,所有內(nèi)容均由用戶發(fā)布,不代表本站觀點。請注意甄別內(nèi)容中的聯(lián)系方式、誘導購買等信息,謹防詐騙。如發(fā)現(xiàn)有害或侵權(quán)內(nèi)容,請點擊一鍵舉報。
    轉(zhuǎn)藏 分享 獻花(0

    0條評論

    發(fā)表

    請遵守用戶 評論公約

    類似文章 更多