It's well known that DNA Sequence is a sequence only contains A, C, T and G, and it's very useful to analyze a segment of DNA Sequence,F(xiàn)or example, if a animal's DNA sequence contains segment ATC then it may mean that the animal may have a genetic disease. Until now scientists have found several those segments, the problem is how many kinds of DNA sequences of a species don't contain those segments. Suppose that DNA sequences of a species is a sequence that consist of A, C, T and G,and the length of sequences is a given integer n. Input First line contains two integer m (0 <= m <= 10), n (1 <= n <=2000000000). Here, m is the number of genetic disease segment, and n is the length of sequences.Next m lines each line contain a DNA genetic disease segment, and length of these segments is not larger than 10. Output An integer, the number of DNA sequences, mod 100000.Sample Input 4 3 AT AC AG AA Sample Output 36 ? 題意: 多組輸入,n代表下面有n個模式串。m代表你要構造的DNA序列長度 題目讓你求DNA序列為m,序列中不出現(xiàn)以上n個模式串的DNA序列有多少 ? 題解: 我的上一代碼用的我自己寫的矩陣快速冪,那個版本每次都要初始化數(shù)組,太耗時了就TLE。找了個結構體版本的快速冪 ? 什么叫i、j節(jié)點,我們在構造字典樹的過程中會產(chǎn)生節(jié)點,那個節(jié)點是第幾個產(chǎn)生的,那個就是它的序號 ? ans[i][j]DNA序列中從i走一步的j這一段在DNA序列中方案數(shù)的這個ans矩陣怎么求? 把每一個病毒串的終止位置給標記了,在字典樹上通過失敗指針跳轉如果能到病毒串終止位置也要把這個點標記了,然后沿著字典樹的next數(shù)組跑一邊就完了(具體看代碼)
? 為什么可以這樣做? ans[i][j]最初的一步矩陣: 他就代表i這個點后面可以往j這個位置走一步有多少種不重復走法 ? ans[i][j]的m次方矩陣: 相當于字典樹就是一個有向圖,你就沿著它的方向跑下去。每跑m路程就會有一個對應DNA序列,又因為你已經(jīng)把病毒串終止位置標記了,所以根本不可能跑到那個位置。所以你跑出來的DNA序列中也不會包含病毒序列 ? 代碼: 1 #include<stdio.h> 2 #include<iostream> 3 #include<string.h> 4 #include<algorithm> 5 #include<queue> 6 using namespace std; 7 const int maxn=115; 8 const int N=4; 9 const int mod=100000; 10 typedef long long ll; 11 int n,m; 12 int w[120]; 13 struct Matrix 14 { 15 int mat[maxn][maxn],n; 16 Matrix() {} 17 Matrix(int _n) 18 { 19 n = _n; 20 for(int i=0; i<n; i ) 21 for(int j=0; j<n; j ) 22 mat[i][j]=0; 23 } 24 Matrix operator *(const Matrix &b)const 25 { 26 Matrix ret=Matrix(n); 27 for(int i=0; i<n; i ) 28 for(int j=0; j<n; j ) 29 for(int k=0; k<n; k ) 30 { 31 int tmp=(long long)mat[i][k]*b.mat[k][j]%mod; 32 ret.mat[i][j]=(ret.mat[i][j] tmp)%mod; 33 } 34 return ret; 35 } 36 }; 37 struct Trie 38 { 39 int next[maxn][N],fail[maxn],ends[maxn]; 40 int root,L; 41 int New_node() //創(chuàng)建一個新節(jié)點 42 { 43 for(int i=0; i<N; i) 44 { 45 next[L][i]=-1; 46 } 47 ends[L ]=0; 48 return L-1; 49 } 50 void init() //創(chuàng)建根節(jié)點 51 { 52 L=0; 53 root=New_node(); 54 } 55 void inserts(char s[]) //往字典樹里面插入新字符串 56 { 57 int len=strlen(s); 58 int now=root; 59 for(int i=0; i<len; i) 60 { 61 if(next[now][w[s[i]]]==-1) 62 next[now][w[s[i]]]=New_node(); 63 now=next[now][w[s[i]]]; 64 } 65 ends[now]=1; //病毒串終點要標記 66 } 67 void build() 68 { 69 queue<int>r; 70 fail[root]=root; 71 for(int i=0; i<N; i) 72 { 73 if(next[root][i]==-1) 74 { 75 next[root][i]=root; 76 } 77 else 78 { 79 fail[next[root][i]]=root; 80 r.push(next[root][i]); 81 } 82 } 83 while(!r.empty()) 84 { 85 int now=r.front(); 86 r.pop(); 87 if(ends[fail[now]]) //如果now節(jié)點的失敗指針指向病毒串終點,那么也要把now這個點給標記了 88 { 89 ends[now]=1; 90 } 91 for(int i=0; i<N; i) 92 { 93 if(next[now][i]==-1) 94 { 95 next[now][i]=next[fail[now]][i]; 96 } 97 else 98 { 99 fail[next[now][i]]=next[fail[now]][i]; 100 r.push(next[now][i]); 101 } 102 } 103 } 104 } 105 Matrix Build_c() 106 { 107 Matrix res=Matrix(L); 108 for(int i=0; i<L; i) 109 { 110 for(int j=0; j<N; j) 111 { 112 if(ends[next[i][j]]==0) //創(chuàng)建走一步的ans矩陣 113 { 114 res.mat[i][next[i][j]] ; 115 } 116 } 117 } 118 return res; 119 } 120 }; 121 char s[20]; 122 Trie ac; 123 Matrix pow_M(Matrix a,int n) 124 { 125 Matrix ret = Matrix(a.n); 126 for(int i = 0; i < ret.n; i ) 127 ret.mat[i][i]=1; 128 Matrix tmp=a; 129 while(n) 130 { 131 if(n&1)ret=ret*tmp; 132 tmp=tmp*tmp; 133 n>>=1; 134 } 135 return ret; 136 } 137 int main() 138 { 139 w['A']=0; 140 w['C']=1; 141 w['G']=2; 142 w['T']=3; 143 while(~scanf("%d%d",&n,&m)) 144 { 145 ac.init(); 146 while(n--) 147 { 148 scanf("%s",s); 149 ac.inserts(s); 150 } 151 ac.build(); 152 Matrix ans=ac.Build_c(); 153 ans=pow_M(ans,m); 154 int sum=0; 155 for(int i=0; i<ac.L; i) 156 sum =ans.mat[0][i],sum%=mod; 157 printf("%d\n",sum); 158 } 159 return 0; 160 } ? 來源:https://www./content-4-595901.html |
|