日韩黑丝制服一区视频播放|日韩欧美人妻丝袜视频在线观看|九九影院一级蜜桃|亚洲中文在线导航|青草草视频在线观看|婷婷五月色伊人网站|日本一区二区在线|国产AV一二三四区毛片|正在播放久草视频|亚洲色图精品一区

分享

數(shù)據(jù)挖掘任務(wù)-根據(jù)前面教程復(fù)現(xiàn)ssGSEA熱圖

 生物_醫(yī)藥_科研 2019-09-03

在前面的學(xué)徒實(shí)習(xí)生數(shù)據(jù)挖掘任務(wù)列表:純R代碼實(shí)現(xiàn)ssGSEA算法評(píng)估腫瘤免疫浸潤(rùn)程度 信息描述了如何下載基因集,然后使用GSVA包進(jìn)行ssGSEA分析后可視化,為了考驗(yàn)大家學(xué)習(xí)效果,我們布置一個(gè)新的圖表復(fù)現(xiàn):

來(lái)自于文章:Multi-omics profiling reveals distinct microenvironment characterization and suggests immune escape mechanisms of triple-negative breast cancer 里面提到了數(shù)據(jù):

The sequencing data is also available in GSE118527 (OncoScan), GSE76250 (HTA 2.0) and SRP157974  (WES and RNAseq)

主要是使用RNA-seq和HTA2.0芯片的表達(dá)數(shù)據(jù),根據(jù)ssGSEA的結(jié)果對(duì)樣本進(jìn)行分組,然后講故事這樣的分組的意義。

TNBC分型歷史

看到很多媒體宣傳最難治的乳腺癌有望獲得分類(lèi)治療,但是其實(shí)TNBC分子分型的研究不少了,復(fù)旦大學(xué)邵志敏團(tuán)隊(duì)2019發(fā)表的這個(gè)中國(guó)人TNBC隊(duì)列既不是第一個(gè),也不會(huì)是最后一個(gè)。

  • 首先是2011的meta分析,把TNBC分成6類(lèi):Basal-like 1 (BL1), basal-like 2 (BL2), immunomodulatory (IM), mesenchymal (M), mesenchymal stem-like (MSL) and luminal androgen receptor (LAR)

  • 然后同樣的作者2016年在plos one 發(fā)文重新修訂了 之前的分類(lèi),變成4類(lèi):(TNBCtype-4) tumor-specific subtypes (BL1, BL2, M and LAR)

  • 發(fā)表在Clin Cancer Res 2015 ,貝勒醫(yī)學(xué)院研究小組的 Burstein  等人對(duì)自己的數(shù)據(jù),198個(gè)TNBC病人芯片表達(dá)矩陣,使用80個(gè)核心基因進(jìn)行分組,得到4個(gè)TNBC的亞型。

  • 發(fā)表在 Breast Cancer Research (2015) :Gene-expression molecular subtyping of triple-negative breast cancer tumours: importance of immune response,數(shù)據(jù)在 GSE58812,  法國(guó)研究團(tuán)隊(duì)的等人使用 適應(yīng)性的Fuzzy-clustering 把107個(gè)TNBC 患者分成3類(lèi)。

使用ssGSEA算法對(duì)CIBERSORT的免疫基因集進(jìn)行分析

本文使用的數(shù)據(jù)在 GSE76250 可以下載,分析流程如下:

ssGSEA算法對(duì)CIBERSORT的免疫基因集進(jìn)行分析后的熱圖展現(xiàn)如下:

此熱圖就是需要重現(xiàn)的圖表!
另外一個(gè)選擇

發(fā)表在:Nat Commun. 2019 Apr,是中國(guó)肺癌研究領(lǐng)域比較出名的吳一龍課題組文章圖表:

使用ssGSEA算法計(jì)算26 immune cell types比例

這26個(gè)基因集來(lái)源于文章 Immunity. 2013 Oct , 分類(lèi)如下;

  • 11個(gè)是adaptive immunity

  • 12個(gè)是 for innate immunity

  • 3個(gè)是 for MDSC,angiogenesis, and antigen presentation machinery

使用GSVA包的ssGSEA算法,對(duì)z-score后的RNA-seq表達(dá)矩陣進(jìn)行分析。有趣的是作者提供了RPKM矩陣哦,The RNA-seq FPKM data have been deposited at figshare (https:///10.6084/m9.figshare.7306364.v1).  所以理論上可以重現(xiàn)作者的分析。

可以把病人分成3組不同的免疫狀態(tài),主要是看 IFNG, PD-L1, PD-1, and CD8 基因的表達(dá)

繼續(xù)看
這里作者使用NBclust分類(lèi),可以把病人隊(duì)列劃分為3個(gè)類(lèi)群。

分型具有生存效果

RNA-seq和HTA2.0芯片的表達(dá)數(shù)據(jù)的比較

這里使用ComBat算法抹去兩個(gè)平臺(tái)的差異



在TNBC隊(duì)列驗(yàn)證

同樣也是分成3類(lèi):

在METABRIC隊(duì)列驗(yàn)證

也可以區(qū)分成為3類(lèi),圖片在文章里面的附件!

附件圖片

  • Supplementary Figure 1. Workflow of our research.

  • Supplementary Figure 2. Estimation of the optimal clustering numbers of triple-negative breast cancer microenvironment phenotypes.

  • Supplementary Figure 3. Validation of microenvironment phenotypes clustering in METABRIC cohort.

  • Supplementary Figure 4. Validation of microenvironment phenotypes clustering in TCGA cohort.

  • Supplementary Figure 5. Comparison of potential molecules involved in the initiation of innate immunity among microenvironment clusters in FUSCCTNBC cohort.

  • Supplementary Figure 6. SNV and indel neoantigen load of the three microenvironment clusters in triple-negative breast cancer.

  • Supplementary Figure 7. Chromosome instability of the three microenvironment clusters in triple-negative breast cancer.

  • Supplementary Figure 8. Cancer testis antigen landscape of triple-negative breast cancer.

  • Supplementary Figure 9. Gene set enrichment analysis of enriched pathways in each cluster.

  • Supplementary Figure 10. Batch effect evaluation after 'Combat' of RNA-seq and HTA microarray datasets.

  • Supplementary Figure 11. Process and validation of mRNA clustering.

附件表格

  • Supplementary Table 1. The compendium of microenvironment cell subtypes in triple-negative breast cancer.

  • Supplementary Table 2. Correlation of estimated microenvironment cell numbers between our compendium and CIBERSORT or MCP-counter.

  • Supplementary Table 3. Clinicopathological characteristics of three microenvironment phenotypes in FUSCC, METABRIC and TCGA cohort.

  • Supplementary Table 4. Prognostic value of each cell subset by univariate Cox proportional hazards model for relapse free survival.

  • Supplementary Table 5. The signatures of ten oncogenic pathways.

  • Supplementary Table 6. Comparison of gene mutation frequency among clusters.

  • Supplementary Table 7. Comparison of somatic copy number alterations among clusters.

  • Supplementary Table 8. GO and KEGG annotation of genes in cluster-specific copy number variation peaks.

后記:

兩個(gè)ssGSEA對(duì)免疫基因集的分析后的熱圖,任君選擇!

■   ■   ■ 

    本站是提供個(gè)人知識(shí)管理的網(wǎng)絡(luò)存儲(chǔ)空間,所有內(nèi)容均由用戶發(fā)布,不代表本站觀點(diǎn)。請(qǐng)注意甄別內(nèi)容中的聯(lián)系方式、誘導(dǎo)購(gòu)買(mǎi)等信息,謹(jǐn)防詐騙。如發(fā)現(xiàn)有害或侵權(quán)內(nèi)容,請(qǐng)點(diǎn)擊一鍵舉報(bào)。
    轉(zhuǎn)藏 分享 獻(xiàn)花(0

    0條評(píng)論

    發(fā)表

    請(qǐng)遵守用戶 評(píng)論公約

    類(lèi)似文章 更多