這是ggplot中十分可愛(ài)的一個(gè)擴(kuò)增包,目的只有一個(gè),就是讓你的圖動(dòng)起來(lái)!就是醬紫??! gganimate 擴(kuò)展了ggplot2實(shí)現(xiàn)的圖形語(yǔ)法,包括動(dòng)畫(huà)描述。它通過(guò)提供一系列新的語(yǔ)法類來(lái)實(shí)現(xiàn)這一點(diǎn),這些類可以添加到繪圖對(duì)象中,以便自定義它應(yīng)該如何隨時(shí)間變化。
下面是他的parameter: transition_*() 定義了數(shù)據(jù)應(yīng)該如何展開(kāi)以及它與時(shí)間的關(guān)系。
view_*() 定義位置比例應(yīng)如何沿動(dòng)畫(huà)更改。
shadow_*() 定義如何在給定的時(shí)間點(diǎn)呈現(xiàn)來(lái)自其他時(shí)間點(diǎn)的數(shù)據(jù)。
enter_*()/ exit_*() 定義新數(shù)據(jù)應(yīng)如何顯示以及舊數(shù)據(jù)在動(dòng)畫(huà)過(guò)程中應(yīng)如何消失。
ease_aes() 定義了在過(guò)渡期間應(yīng)該如何進(jìn)行過(guò)渡。
舉個(gè)栗子!#安裝輔助包,該包有兩個(gè)版本,已經(jīng)更新為最新版本,老版本在未來(lái)將不再支持。install.packages('gganimate')
# 安裝開(kāi)發(fā)版 # install.packages('devtools') # devtools::install_github('thomasp85/gganimate') library(ggplot2) library(gganimate)
ggplot(mtcars, aes(factor(cyl), mpg)) + geom_boxplot() + geom_point() + # Here comes the gganimate code transition_states( gear, transition_length = 2, state_length = 1 ) + enter_fade() + exit_shrink() + ease_aes('sine-in-out')

加載時(shí)間是比較長(zhǎng)的,需要耐心等待哈! 

Yet Another Example
首先查看一下數(shù)據(jù)格式吧,Gapminder 是關(guān)于預(yù)期壽命,人均國(guó)內(nèi)生產(chǎn)總值和國(guó)家人口的數(shù)據(jù)摘錄。 library(gapminder) head(gapminder)#我們看一下數(shù)據(jù)格式

ggplot(gapminder, aes(gdpPercap, lifeExp, size = pop, colour = country)) + #點(diǎn)的大小和顏色分別由pop和country決定;geom_point(alpha = 0.7, show.legend = FALSE) + scale_colour_manual(values = country_colors) + #進(jìn)行數(shù)值之間的映射 scale_size(range = c(2, 12)) + #設(shè)置繪圖符號(hào)大小 scale_x_log10() + #連續(xù)數(shù)據(jù)位置的標(biāo)準(zhǔn)化 facet_wrap(~continent) + #按照continent進(jìn)行分類 # Here comes the gganimate specific bits labs(title = 'Year: {frame_time}', x = 'GDP per capita', y = 'life expectancy') + transition_time(year) + ease_aes('linear')#指數(shù)據(jù)變化的狀態(tài),線性發(fā)展比較緩慢


哈哈哈,現(xiàn)在我們以腫瘤數(shù)據(jù)為例進(jìn)行演示一下:我編了一組測(cè)試數(shù)據(jù),其中將腫瘤分為I,II,III型,IV型為control,然后分別顯示了再不同樣本中不同腫瘤分型下的部分基因的表達(dá)情況。 library(ggplot2) library(gganimate) #首先我們進(jìn)行數(shù)據(jù)的讀入
data <- 'subgroup,sample,gene,expression I,Tumor,p53,12.725952 II,Tumor,p53,11.914176 III,Tumor,p53,12.315768 IV,Normal,p53,12.978894 I,Tumor,p53,11.93924 II,Tumor,p53,12.262185 III,Tumor,p53,11.538924 IV,Normal,p53,12.016589 I,Tumor,p53,12.302574 II,Tumor,p53,11.939233 III,Tumor,p53,12.803992 IV,Normal,p53,10.674506 I,Tumor,p53,12.569142 II,Tumor,p53,12.088496 III,Tumor,p53,9.971951 IV,Normal,p53,13.008554 I,Tumor,p53,12.804154 II,Tumor,p53,11.847107 III,Tumor,p53,12.081261 IV,Normal,p53,12.158431 I,Tumor,p53,11.096693 II,Tumor,p53,12.655811 III,Tumor,p53,11.509067 IV,Normal,p53,12.523573 I,Tumor,p53,11.3554 II,Tumor,p53,11.560566 III,Tumor,p53,10.969046 IV,Normal,p53,11.169892 I,Tumor,p53,12.884054 II,Tumor,p53,12.284268 III,Tumor,her2,9.575523 IV,Normal,her2,12.409381 I,Tumor,her2,12.114364 II,Tumor,her2,11.493997 III,Tumor,her2,10.987106 IV,Normal,her2,11.943991 I,Tumor,her2,11.171378 II,Tumor,her2,13.120248 III,Tumor,her2,12.628872 IV,Normal,her2,11.91914 I,Tumor,her2,12.36504 II,Tumor,her2,12.707354 III,Tumor,her2,12.54517 IV,Normal,her2,12.199749 I,Tumor,her2,13.184496 II,Tumor,her2,12.640412 III,Tumor,her2,12.716897 IV,Normal,her2,13.359091 I,Tumor,her2,11.760945 II,Tumor,her2,11.406367 III,Tumor,her2,11.984382 IV,Normal,her2,12.254977 I,Tumor,her2,11.579763 II,Tumor,her2,11.983042 III,Tumor,her2,12.566317 IV,Normal,her2,10.869331 I,Tumor,her2,10.910963 II,Tumor,her2,11.948207 III,Tumor,myc,12.363072 IV,Normal,myc,12.755182 I,Tumor,myc,11.922223 II,Tumor,myc,9.618839 III,Tumor,myc,12.693868 IV,Normal,myc,13.40685 I,Tumor,myc,11.871609 II,Tumor,myc,11.783704 III,Tumor,myc,12.485053 IV,Normal,myc,12.669123 I,Tumor,myc,11.653691 II,Tumor,myc,11.675768 III,Tumor,myc,12.744605 IV,Normal,myc,12.911619 I,Tumor,myc,12.008307 II,Tumor,myc,11.838161 III,Tumor,myc,12.590989 IV,Normal,myc,11.680278 I,Tumor,myc,11.719241 II,Tumor,myc,10.156746 III,Tumor,myc,11.84406 IV,Normal,myc,12.975393 I,Tumor,myc,10.963332 II,Tumor,myc,12.338216 III,Tumor,myc,12.030859 IV,Normal,myc,11.119114 I,Tumor,myc,12.661349 II,Tumor,myc,13.168166 III,Tumor,myc,11.707595 IV,Normal,myc,12.06719 I,Tumor,myc,12.463962 II,Tumor,myc,12.288819 III,Tumor,myc,12.036757 IV,Normal,myc,12.98055 I,Tumor,myc,11.343075 II,Tumor,myc,12.565481 III,Tumor,myc,12.279996 IV,Normal,myc,12.965189 I,Tumor,myc,12.946155 II,Tumor,myc,11.688462 III,Tumor,sox4,11.944477 IV,Normal,sox4,12.128177 I,Tumor,sox4,11.116105 II,Tumor,sox4,11.148871 III,Tumor,sox4,13.139244 IV,Normal,sox4,10.043207 I,Tumor,sox4,12.043914 II,Tumor,sox4,9.990576 III,Tumor,sox4,11.624263 IV,Normal,sox4,11.647402 I,Tumor,sox4,12.502176 II,Tumor,sox4,12.291812 III,Tumor,sox4,11.421913 IV,Normal,sox4,12.282511 I,Tumor,sox4,12.511991 II,Tumor,sox4,12.285322 III,Tumor,sox4,11.7884 IV,Normal,sox4,13.747552 I,Tumor,sox4,11.212993 II,Tumor,sox4,12.936845 III,Tumor,sox4,12.442484 IV,Normal,sox4,10.324288 I,Tumor,sox4,12.436421 II,Tumor,sox4,11.923122 III,Tumor,sox4,12.831474 IV,Normal,sox4,12.271537 I,Tumor,sox4,12.208086 II,Tumor,sox4,11.830799 III,Tumor,sox4,12.410238 IV,Normal,sox4,12.13912 I,Tumor,sox4,12.47'
test <- read.csv(text=data,header=T) head(test)

library(ggplot2) ggplot(test,aes(x=subgroup,y=expression,fill=subgroup))+ geom_boxplot()+ geom_jitter()+ theme_bw() #按照subgroup進(jìn)行分型,并畫(huà)出箱式圖

同樣對(duì)不同gene在各組中的分布情況進(jìn)行描述:
library(ggplot2) p <- ggplot(test,aes(x=subgroup,y=expression,fill=subgroup))+ geom_boxplot()+ geom_jitter()+ theme_bw() p +facet_grid(.~gene)#按照gene對(duì)各個(gè)小組進(jìn)行分類

library(ggplot2) library(gganimate) p <- ggplot(test,aes(x=subgroup,y=expression,fill=subgroup))+ geom_boxplot()+ geom_jitter()+ theme_bw() p +transition_states(gene, state_length = 0)+ labs(title = '{closest_state} expression')


|