我有以下問題:我想從2D數(shù)組中提取一維配置文件,這是相對簡單的.并且在任意方向上也很容易做到這一點(見here).
但我想給輪廓一定的寬度,以便垂直于輪廓的值被平均.我設(shè)法做到了這一點,但速度非常慢. 有人有一個很好的解決方案嗎?
謝謝!
import numpy as np
import os
import math
import itertools
import matplotlib.pyplot as plt
from matplotlib.patches import Polygon
def closest_point(points, coords):
min_distances = []
coords = coords
for point in points:
distances = []
for coord in coords:
distances.append(np.sqrt((point[0]-coord[0])**2 (point[1]-coord[1])**2))
val, idx = min((val, idx) for (idx, val) in enumerate(distances))
min_distances.append(coords[idx])
return min_distances
def rect_profile(x0, y0, x1, y1, width):
xd=x1-x0
yd=y1-y0
alpha = (np.angle(xd 1j*yd))
y00 = y0 - np.cos(math.pi - alpha)*width
x00 = x0 - np.sin(math.pi - alpha)*width
y01 = y0 np.cos(math.pi - alpha)*width
x01 = x0 np.sin(math.pi - alpha)*width
y10 = y1 np.cos(math.pi - alpha)*width
x10 = x1 np.sin(math.pi - alpha)*width
y11 = y1 - np.cos(math.pi - alpha)*width
x11 = x1 - np.sin(math.pi - alpha)*width
vertices = ((y00, x00), (y01, x01), (y10, x10), (y11, x11))
poly_points = [x00, x01, x10, x11], [y00, y01, y10, y11]
poly = Polygon(((y00, x00), (y01, x01), (y10, x10), (y11, x11)))
return poly, poly_points
def averaged_profile(image, x0, y0, x1, y1, width):
num = np.sqrt((x1-x0)**2 (y1-y0)**2)
x, y = np.linspace(x0, x1, num), np.linspace(y0, y1, num)
coords = list(zip(x, y))
# Get all points that are in Rectangle
poly, poly_points = rect_profile(x0, y0, x1, y1, width)
points_in_poly = []
for point in itertools.product(range(image.shape[0]), range(image.shape[1])):
if poly.get_path().contains_point(point, radius=1) == True:
points_in_poly.append((point[1], point[0]))
# Finds closest point on line for each point in poly
neighbour = closest_point(points_in_poly, coords)
# Add all phase values corresponding to closest point on line
data = []
for i in range(len(coords)):
data.append([])
for idx in enumerate(points_in_poly):
index = coords.index(neighbour[idx[0]])
data[index].append(image[idx[1][1], idx[1][0]])
# Average data perpendicular to profile
for i in enumerate(data):
data[i[0]] = np.nanmean(data[i[0]])
# Plot
fig, axes = plt.subplots(figsize=(10, 5), nrows=1, ncols=2)
axes[0].imshow(image)
axes[0].plot([poly_points[0][0], poly_points[0][1]], [poly_points[1][0], poly_points[1][1]], 'yellow')
axes[0].plot([poly_points[0][1], poly_points[0][2]], [poly_points[1][1], poly_points[1][2]], 'yellow')
axes[0].plot([poly_points[0][2], poly_points[0][3]], [poly_points[1][2], poly_points[1][3]], 'yellow')
axes[0].plot([poly_points[0][3], poly_points[0][0]], [poly_points[1][3], poly_points[1][0]], 'yellow')
axes[0].axis('image')
axes[1].plot(data)
return data
from scipy.misc import face
img = face(gray=True)
profile = averaged_profile(img, 10, 10, 500, 500, 10)
解決方法: 主要的性能值是函數(shù)nearest_point.使用矩形中的所有點計算線上所有點之間的距離非常慢.
通過將所有矩形點投影到線上,可以大大加快功能.投影點是線上最近的點,因此無需計算所有距離.此外,通過正確地標(biāo)準(zhǔn)化和舍入投影(距線開始的距離),它可以直接用作索引.
def closest_point(points, x0, y0, x1, y1):
line_direction = np.array([x1 - x0, y1 - y0], dtype=float)
line_length = np.sqrt(line_direction[0]**2 line_direction[1]**2)
line_direction /= line_length
n_bins = int(np.ceil(line_length))
# project points on line
projections = np.array([(p[0] * line_direction[0] p[1] * line_direction[1]) for p in points])
# normalize projections so that they can be directly used as indices
projections -= np.min(projections)
projections *= (n_bins - 1) / np.max(projections)
return np.floor(projections).astype(int), n_bins
如果你想知道括號內(nèi)的奇怪 – 這些是list comprehensions.
在averaged_profile中使用這樣的函數(shù):
#...
# Finds closest point on line for each point in poly
neighbours, n_bins = closest_point(points_in_poly, x0, y0, x1, y1)
# Add all phase values corresponding to closest point on line
data = [[] for _ in range(n_bins)]
for idx in enumerate(points_in_poly):
index = neighbours[idx[0]]
data[index].append(image[idx[1][1], idx[1][0]])
#...
這種優(yōu)化將使計算速度明顯加快.如果它對您來說仍然太慢,您還可以優(yōu)化在多邊形內(nèi)找到點的方式.不是測試圖像中的每個點是否在矩形內(nèi),您可以使用多邊形光柵化算法直接生成坐標(biāo).有關(guān)詳情,請參閱here.
最后,雖然它不是性能問題,但使用復(fù)數(shù)計算角度非常有創(chuàng)意:) 除了三角函數(shù),您可以使用線的法線向量是[yd,-xd]除以線長度的事實:
def rect_profile(x0, y0, x1, y1, width):
xd = x1 - x0
yd = y1 - y0
length = np.sqrt(xd**2 yd**2)
y00 = y0 xd * width / length
x00 = x0 - xd * width / length
y01 = y0 - xd * width / length
x01 = x0 xd * width / length
y10 = y1 - xd * width / length
x10 = x1 xd * width / length
y11 = y1 xd * width / length
x11 = x1 - xd * width / length
poly_points = [x00, x01, x10, x11], [y00, y01, y10, y11]
poly = Polygon(((y00, x00), (y01, x01), (y10, x10), (y11, x11)))
return poly, poly_points
來源:https://www./content-1-303951.html
|