日韩黑丝制服一区视频播放|日韩欧美人妻丝袜视频在线观看|九九影院一级蜜桃|亚洲中文在线导航|青草草视频在线观看|婷婷五月色伊人网站|日本一区二区在线|国产AV一二三四区毛片|正在播放久草视频|亚洲色图精品一区

分享

遺傳人工神經(jīng)網(wǎng)絡(luò)Python實現(xiàn)

 南氏珍藏 2019-06-23
遺傳人工神經(jīng)網(wǎng)絡(luò)Python實現(xiàn)

介紹

人工神經(jīng)網(wǎng)絡(luò)的靈感來自我們的大腦。遺傳算法受到進化的啟發(fā)。本文提出了一種新型的輔助訓(xùn)練的神經(jīng)網(wǎng)絡(luò):遺傳神經(jīng)網(wǎng)絡(luò)。這些神經(jīng)網(wǎng)絡(luò)具有適應(yīng)度等特性,并使用遺傳算法訓(xùn)練隨機生成的權(quán)重。遺傳優(yōu)化發(fā)生在任何形式的反向傳播之前,以給梯度下降提供一個更好的起點。

序列神經(jīng)網(wǎng)絡(luò)

序列神經(jīng)網(wǎng)絡(luò)接受一個輸入矩陣,在模型外部與一個真實輸出值的向量配對。然后通過遍歷每一層,通過權(quán)重和激活函數(shù)來變換矩陣。

遺傳人工神經(jīng)網(wǎng)絡(luò)Python實現(xiàn)

這是一個序列神經(jīng)網(wǎng)絡(luò),具有一個輸入矩陣,兩個隱藏層,一個輸出層,三個權(quán)重矩陣和一種激活函數(shù)。

訓(xùn)練算法

最初的預(yù)測很可能是不準確的,所以為了訓(xùn)練一個序列神經(jīng)網(wǎng)絡(luò)做出更好的預(yù)測,我們把它看作一個復(fù)合函數(shù)。

遺傳人工神經(jīng)網(wǎng)絡(luò)Python實現(xiàn)

創(chuàng)建一個損失函數(shù),輸入矩陣和真實輸出向量(X和y)保持不變。

遺傳人工神經(jīng)網(wǎng)絡(luò)Python實現(xiàn)

現(xiàn)在所有的東西都是關(guān)于函數(shù)的,并且有一個明確的目標(最小化損失),我們得到一個多變量微積分的優(yōu)化問題。

遺傳人工神經(jīng)網(wǎng)絡(luò)Python實現(xiàn)

隨著模型顯示出越來越多的復(fù)雜性,梯度下降的計算成本可能變得非常昂貴。遺傳神經(jīng)網(wǎng)絡(luò)提供了一個可供選擇的初始訓(xùn)練過程,以提供一個更好的起點,在反向傳播過程中允許更少的epochs。

遺傳神經(jīng)網(wǎng)絡(luò)

在遺傳神經(jīng)網(wǎng)絡(luò)中,網(wǎng)絡(luò)被視為具有fields和適應(yīng)度的計算對象。這些fields被認為是在反向傳播之前通過遺傳算法優(yōu)化的基因。這使得梯度下降具有更好的起始位置,并且允許更少的訓(xùn)練時間,并具有更高的模型測試準確度??紤]以下遺傳神經(jīng)網(wǎng)絡(luò),其中權(quán)重被視為計算對象中的fields。

遺傳人工神經(jīng)網(wǎng)絡(luò)Python實現(xiàn)

這些fields是相對于遺傳神經(jīng)網(wǎng)絡(luò)的每個實例的基因。就像序列神經(jīng)網(wǎng)絡(luò)一樣,它可以表示為復(fù)合函數(shù)。

遺傳人工神經(jīng)網(wǎng)絡(luò)Python實現(xiàn)

然而,在使用微積分之前,我們將使用遺傳算法采取進化方法來優(yōu)化權(quán)重。

遺傳算法

在自然界中,染色體交叉看起來是這樣的…

遺傳人工神經(jīng)網(wǎng)絡(luò)Python實現(xiàn)

如果我們把染色體簡化成塊…

遺傳人工神經(jīng)網(wǎng)絡(luò)Python實現(xiàn)

這與遺傳算法用于改變權(quán)重矩陣的邏輯相同。這個想法將是創(chuàng)建一個初始種群的n個遺傳神經(jīng)網(wǎng)絡(luò),經(jīng)過正向傳播計算出一個適應(yīng)度得分,最后選擇最適合的個體來創(chuàng)建孩子。這個過程將重復(fù),直到找到最優(yōu)的初始權(quán)值進行反向傳播。

應(yīng)用遺傳神經(jīng)網(wǎng)絡(luò)

首先,我們必須建立遺傳神經(jīng)網(wǎng)絡(luò)。我們使用的是具有四個輸入節(jié)點,兩個隱藏層和一個輸出層的訓(xùn)練模型(以匹配上圖),這可以擴展到任何類型的神經(jīng)網(wǎng)絡(luò)。

import pandas as pd
import numpy as np
import random
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
from keras.models import Sequential
from keras.layers import Dense
# New Type of Neural Network
class GeneticNeuralNetwork(Sequential):
# Constructor
def __init__(self, child_weights=None):
# Initialize Sequential Model Super Class
super().__init__()
# If no weights provided randomly generate them
if child_weights is None:
# Layers are created and randomly generated
layer1 = Dense(4, input_shape=(4,), activation='sigmoid')
layer2 = Dense(2, activation='sigmoid')
layer3 = Dense(1, activation='sigmoid')
# Layers are added to the model
self.add(layer1)
self.add(layer2)
self.add(layer3)
# If weights are provided set them within the layers
else:
# Set weights within the layers
self.add(
Dense(
4,
input_shape=(4,),
activation='sigmoid',
weights=[child_weights[0], np.zeros(4)])
)
self.add(
Dense(
2,
activation='sigmoid',
weights=[child_weights[1], np.zeros(2)])
)
self.add(
Dense(
1,
activation='sigmoid',
weights=[child_weights[2], np.zeros(1)])
)
# Function for forward propagating a row vector of a matrix
def forward_propagation(self, X_train, y_train):
# Forward propagation
y_hat = self.predict(X_train.values)
# Compute fitness score
self.fitness = accuracy_score(y_train, y_hat.round())
# Standard Backpropagation
def compile_train(self, epochs):
self.compile(
optimizer='rmsprop',
loss='binary_crossentropy',
metrics=['accuracy']
)
self.fit(X_train.values, y_train.values, epochs=epochs)
遺傳人工神經(jīng)網(wǎng)絡(luò)Python實現(xiàn)
遺傳人工神經(jīng)網(wǎng)絡(luò)Python實現(xiàn)

現(xiàn)在我們已經(jīng)建立了遺傳神經(jīng)網(wǎng)絡(luò),我們可以開發(fā)出一種交叉算法。我們將使用類似于上面給出的生物圖示的單點交叉。每一個矩陣列都有相同的機會被選擇為一個交叉點,讓每一個父母組合他們的基因并將它們傳遞給孩子。

# Crossover traits between two Genetic Neural Networks
def dynamic_crossover(nn1, nn2):
# Lists for respective weights
nn1_weights = []
nn2_weights = []
child_weights = []
# Get all weights from all layers in the first network
for layer in nn1.layers:
nn1_weights.append(layer.get_weights()[0])
# Get all weights from all layers in the second network
for layer in nn2.layers:
nn2_weights.append(layer.get_weights()[0])
# Iterate through all weights from all layers for crossover
for i in range(0, len(nn1_weights)):
# Get single point to split the matrix in parents based on # of cols
split = random.randint(0, np.shape(nn1_weights[i])[1]-1)
# Iterate through after a single point and set the remaing cols to nn_2
for j in range(split, np.shape(nn1_weights[i])[1]-1):
nn1_weights[i][:, j] = nn2_weights[i][:, j]
# After crossover add weights to child
child_weights.append(nn1_weights[i])
# Add a chance for mutation
mutation(child_weights)
# Create and return child object
child = GeneticNeuralNetwork(child_weights)
return child
遺傳人工神經(jīng)網(wǎng)絡(luò)Python實現(xiàn)

為了確保種群探索解空間,應(yīng)該會發(fā)生突變。在這種情況下,因為解空間非常大,突變的概率顯著高于大多數(shù)其他遺傳算法。沒有特定的方法來改變矩陣,我們在矩陣上隨機執(zhí)行標量乘法,幅度為2-5。

# Chance to mutate weights
def mutation(child_weights):
# Add a chance for random mutation
selection = random.randint(0, len(child_weights)-1)
mut = random.uniform(0, 1)
if mut >= .5:
child_weights[selection] *= random.randint(2, 5)
else:
# No mutation
pass
遺傳人工神經(jīng)網(wǎng)絡(luò)Python實現(xiàn)

最后,模擬遺傳神經(jīng)網(wǎng)絡(luò)的演化。我們需要網(wǎng)絡(luò)數(shù)據(jù)來學(xué)習(xí),因此我們將使用眾所周知的 banknote機器學(xué)習(xí)數(shù)據(jù)集。

# Read Data
data = pd.read_csv('banknote.csv')
# Create Matrix of Independent Variables
X = data.drop(['Y'], axis=1)
# Create Vector of Dependent Variable
y = data['Y']
# Create a Train Test Split for Genetic Optimization
X_train, X_test, y_train, y_test = train_test_split(X, y)
# Create a List of all active GeneticNeuralNetworks
networks = []
pool = []
# Track Generations
generation = 0
# Initial Population
n = 20
# Generate n randomly weighted neural networks
for i in range(0, n):
networks.append(GeneticNeuralNetwork())
# Cache Max Fitness
max_fitness = 0
# Max Fitness Weights
optimal_weights = []
# Evolution Loop
while max_fitness < .9:
# Log the current generation
generation += 1
print('Generation: ', generation)
# Forward propagate the neural networks to compute a fitness score
for nn in networks:
# Propagate to calculate fitness score
nn.forward_propagation(X_train, y_train)
# Add to pool after calculating fitness
pool.append(nn)
# Clear for propagation of next children
networks.clear()
# Sort based on fitness
pool = sorted(pool, key=lambda x: x.fitness)
pool.reverse()
# Find Max Fitness and Log Associated Weights
for i in range(0, len(pool)):
# If there is a new max fitness among the population
if pool[i].fitness > max_fitness:
max_fitness = pool[i].fitness
print('Max Fitness: ', max_fitness)
# Reset optimal_weights
optimal_weights = []
# Iterate through all layers, get weights, and append to optimal
for layer in pool[i].layers:
optimal_weights.append(layer.get_weights()[0])
print(optimal_weights)
# Crossover, top 5 randomly select 2 partners for child
for i in range(0, 5):
for j in range(0, 2):
# Create a child and add to networks
temp = dynamic_crossover(pool[i], random.choice(pool))
# Add to networks to calculate fitness score next iteration
networks.append(temp)
# Create a Genetic Neural Network with optimal initial weights
gnn = GeneticNeuralNetwork(optimal_weights)
gnn.compile_train(10)
# Test the Genetic Neural Network Out of Sample
y_hat = gnn.predict(X_test.values)
print('Test Accuracy: %.2f' % accuracy_score(y_test, y_hat.round()))
遺傳人工神經(jīng)網(wǎng)絡(luò)Python實現(xiàn)
遺傳人工神經(jīng)網(wǎng)絡(luò)Python實現(xiàn)

結(jié)果

第一種模式:10代遺傳算法和10個epochs的訓(xùn)練

第二種模式:10個epochs的訓(xùn)練

  • 遺傳神經(jīng)網(wǎng)絡(luò)的測試準確度為 .96
  • 標準神經(jīng)網(wǎng)絡(luò)的測試準確度為 .57

遺傳神經(jīng)網(wǎng)絡(luò)在相同數(shù)量的訓(xùn)練時期內(nèi)將模型準確度提高了 0.39。

    本站是提供個人知識管理的網(wǎng)絡(luò)存儲空間,所有內(nèi)容均由用戶發(fā)布,不代表本站觀點。請注意甄別內(nèi)容中的聯(lián)系方式、誘導(dǎo)購買等信息,謹防詐騙。如發(fā)現(xiàn)有害或侵權(quán)內(nèi)容,請點擊一鍵舉報。
    轉(zhuǎn)藏 分享 獻花(0

    0條評論

    發(fā)表

    請遵守用戶 評論公約

    類似文章 更多