1.1 時間序列的概念和種類 1.1.1 時間序列的概念和構(gòu)成 1. 同一現(xiàn)象在不同時間上的相繼觀察值排列而成的數(shù)列 2. 形式上由現(xiàn)象所屬的時間和現(xiàn)象在不同時間上的觀察值兩部分組成 3. 排列的時間可以是年份、季度、月份或其他任何時間形式 1.1.2 時間序列的種類 1.平穩(wěn)序列(stationary series) (1) 基本上不存在趨勢的序列,各觀察值基本上在某個固定的水平上波動 (2) 或雖有波動,但并不存在某種規(guī)律,而其波動可以看成是隨機的 2.非平穩(wěn)序列 (non-stationary series) (1) 有趨勢的序列 (2) 線性的,非線性的 (3) 有趨勢和季節(jié)性的序列 (4) 有趨勢、季節(jié)性和周期性的復(fù)合型序列 1.1.3 時間序列的成分 1.趨勢(trend) (1) 持續(xù)向上或持續(xù)下降的狀態(tài)或規(guī)律; (2) 既可以是線性趨勢,也可以是非線性趨勢 2.季節(jié)性(seasonality) (1) 也稱季節(jié)變動(Seasonal fluctuation) (2) 時間序列在一年內(nèi)重復(fù)出現(xiàn)的周期性波動 3.周期性(cyclity) (1) 也稱循環(huán)波動(Cyclical fluctuation) (2) 圍繞長期趨勢的一種波浪形或振蕩式變動 4.隨機性(random) (1) 也稱不規(guī)則波動(Irregular variations) (2) 除去趨勢、周期性和季節(jié)性之后的偶然性波動 1.1.3.1 含有不同成分的時間序列 1.1.3.2 一張圖總結(jié)時間序列的成分 1.2 時間序列的描述性分析 1.2.1 圖形描述 1.2.2 水平指標(biāo)分析 1.2.2.1 發(fā)展水平和平均發(fā)展水平 1. 發(fā)展水平:指時間序列中每一項指標(biāo)數(shù)值 2. 平均發(fā)展水平:又叫時序平均數(shù),是把時間數(shù)列中各期指標(biāo)數(shù)值加以平均而求得的平均數(shù)。 3. 一般平均數(shù)與序時平均數(shù) (1) 共同點:具有抽象性和代表性 (2) 不同點: a) 計算的依據(jù)不同:前者是根據(jù)變量數(shù)列計算的,后者則是根據(jù)時間數(shù)列計算的。 b) 說明的內(nèi)容不同:前者表明總體內(nèi)部各單位的一般水平,后者則表明整個總體在不同時期內(nèi)的一般水平。 1.2.2.2 序時平均數(shù)的計算方法 1. 計算絕對數(shù)時間數(shù)列的序時平均數(shù) (1) 由時期數(shù)列計算,采用簡單算術(shù)平均法 式中, 代表平均發(fā)展水平, 代表各期發(fā)展水平,n代表時期項數(shù) 例,我國“01-05”期間的每年GDP 年份 2001 2002 2003 2004 2005 GDP(億元) 109655 120333 135823 159878 183868 (2) 由時點數(shù)列計算 a) 由連續(xù)時點數(shù)列計算 間隔相等時,采用簡單算術(shù)平均法 ![]() 例:已知某企業(yè)一個月內(nèi)每天的工人數(shù),如果計算該月每天平均工人數(shù),則將每天工人數(shù)相加之和除以該月的日歷天數(shù)即可 b) 由間斷時點數(shù)列計算 間隔不相等時,采用加權(quán)算術(shù)平均法 ![]() 例: 間隔相等時,采用首末折半法 ![]() 間隔不相等時,采用加權(quán)序時平均法 ![]() 2. 計算相對數(shù)或靜態(tài)平均數(shù)時間數(shù)列的序時平均數(shù) 基本公式:若時間數(shù)列 ![]() 則 ![]() (1) b均為時期數(shù)列時 ![]() 例 (2) a,b均為時點數(shù)列時 ![]() (3) a為時期數(shù)列,b為時點數(shù)列時 ![]() 1.2.3 速度指標(biāo)分析 1.2.3.1 發(fā)展速度和增長速度 發(fā)展速度:指報告期水平與基期水平的比值,說明現(xiàn)象的發(fā)展程度和方向。 增長速度:指增長量與基期水平的比值,說明報告期水平較基期水平增長的程度。 1.2.3.2 平均發(fā)展速度和平均增長速度 平均發(fā)展速度:各環(huán)比發(fā)展速度的平均數(shù),說明現(xiàn)象每期變動的平均程度。 平均增長速度:說明現(xiàn)象逐期增長的平均程度。 1.2.3.3 平均發(fā)展速度的計算 幾何平均法(水平法) 方程法(累計法) 1.2.3.4 增長率分析中應(yīng)注意的問題 1.當(dāng)時間序列中的觀察值出現(xiàn)0或負(fù)數(shù)時,不宜計算增長率 2.例如:假定某企業(yè)連續(xù)五年的利潤額分別為5,2,0,-3,2萬元,對這一序列計算增長率,要么不符合數(shù)學(xué)公理,要么無法解釋其實際意義。在這種情況下,適宜直接用絕對數(shù)進(jìn)行分析 3.在有些情況下,不能單純就增長率論增長率,要注意增長率與絕對水平的結(jié)合分析 1.2.3.5 增長率分析中應(yīng)注意的問題-增長1%絕對值 1.增長率每增長一個百分點而增加的絕對量 2.用于彌補增長率分析中的局限性 3.計算公式為 ![]() 甲企業(yè)增長1%絕對值=500/100=5萬元 乙企業(yè)增長1%絕對值=60/100=0.6萬元 1.3 時間序列預(yù)測的程序 1.3.1 確定時間序列的成分 【例】一種股票連續(xù)16周的收盤價如下表所示。試確定其趨勢及其類型 ![]() 【例】下面是一家啤酒生產(chǎn)企業(yè)2000~2005年各季度的啤酒銷售量數(shù)據(jù)。試根據(jù)這6年的數(shù)據(jù)繪制年度折疊時間序列圖,并判斷啤酒銷售量是否存在季節(jié)性 ![]() 1.3.2 選擇預(yù)測方法 ![]() 1.3.3 評估預(yù)測方法 計算誤差 1. 平均誤差ME ![]() 2. 平均絕對誤差MAD ![]() 3. 均方誤差MSE ![]() 4. 平均百分比誤差MPE ![]() 5. 平均絕對百分比誤差MAPE ![]() 1.4 時間序列預(yù)測的方法 1.4.1 平穩(wěn)時間序列預(yù)測方法 1.4.1.1 簡單平均法 1. 根據(jù)過去已有的t期觀察值來預(yù)測下一期的數(shù)值 2. 設(shè)時間序列已有的其觀察值為 ![]() ,則第t+1期預(yù)測值 ![]() 為 ![]() 3. 有了第t+1的實際值,便可計算出預(yù)測誤差為 ![]() 4. 第t+2期的預(yù)測值為 ![]() 簡單平均法的特點 1.適合對較為平穩(wěn)的時間序列進(jìn)行預(yù)測 2.預(yù)測結(jié)果不準(zhǔn) (1) 將遠(yuǎn)期的數(shù)值和近期的數(shù)值看作對未來同等重要 (2) 從預(yù)測角度看,近期的數(shù)值要比遠(yuǎn)期的數(shù)值對未來有更大的作用 (3) 當(dāng)時間序列有趨勢或有季節(jié)變動時,該方法的預(yù)測不夠準(zhǔn)確 1.4.1.2 移動平均法 1.對簡單平均法的一種改進(jìn)方法 2.通過對時間序列逐期遞移求得一系列平均數(shù)作為預(yù)測值(也可作為趨勢值) 3.有簡單移動平均法和加權(quán)移動平均法兩種 1.4.1.3 簡單移動平均法-步驟 1. 將最近k期數(shù)據(jù)平均作為下一期的預(yù)測值 2. 設(shè)移動間隔為k,則t期的移動平均值為 ![]() 3. t+1期的簡單移動平均預(yù)測值為 ![]() 4. 預(yù)測誤差用均方誤差(MSE)來衡量 ![]() 簡單移動平均法的-特點 1.將每個觀察值都給予相同的權(quán)數(shù) 2.只使用最近期的數(shù)據(jù),在每次計算移動平均值時,移動的間隔都為k 3.主要適合對較為平穩(wěn)的序列進(jìn)行預(yù)測 4.對于同一個時間序列,采用不同的移動步長預(yù)測的準(zhǔn)確性是不同的 ?選擇移動步長時,可通過試驗的辦法,選擇一個使均方誤差達(dá)到最小的移動步長 簡單移動平均法-例題分析 1.4.1.4 指數(shù)平滑法 1.是加權(quán)平均的一種特殊形式 2.對過去的觀察值加權(quán)平均進(jìn)行預(yù)測的一種方法 3.觀察值時間越遠(yuǎn),其權(quán)數(shù)也跟著呈現(xiàn)指數(shù)的下降,因而稱為指數(shù)平滑 4.有一次指數(shù)平滑、二次指數(shù)平滑、三次指數(shù)平滑等 5.一次指數(shù)平滑法也可用于對時間序列進(jìn)行修勻,以消除隨機波動,找出序列的變化趨勢 一次指數(shù)平滑 1. 只有一個平滑系數(shù) 2. 觀察值離預(yù)測值時期越久遠(yuǎn),權(quán)數(shù)變得越小 3. 以一段時期的預(yù)測值與觀察值的線性組合作為第t+1期的預(yù)測值,其預(yù)測模型為 ![]() (1) ![]() 為第t期的實際觀察值 (2) ![]() 為第t期的預(yù)測值 (3) ![]() 為平滑系數(shù)( ![]() ) 1.4.2 趨勢型時間序列的預(yù)測 1.4.2.1 趨勢序列及其預(yù)測方法 1.趨勢(trend) ?持續(xù)向上或持續(xù)下降的狀態(tài)或規(guī)律 2. 有線性趨勢和非線性趨勢 3.方法主要有 ?線性趨勢預(yù)測 ?非線性趨勢預(yù)測 ?自回歸模型預(yù)測 1.4.2.2 線性趨勢預(yù)測 ![]() 1.現(xiàn)象隨著時間的推移而呈現(xiàn)出穩(wěn)定增長或下降的線性變化規(guī)律 2.由影響時間序列的基本因素作用形成 3.時間序列的成分之一 4.預(yù)測方法:線性模型法 線性模型法-方程及其求解 ![]() 其中, ![]() :時間序列的預(yù)測值 t:時間標(biāo)好 ![]() :趨勢線在Y軸上的截距 ![]() :趨勢線的斜率,表示時間t變動一個單位時觀察值的平均變動數(shù)量 根據(jù)最小二乘法得到求解 ![]() 和 ![]() 的標(biāo)準(zhǔn)方程為 ![]() 解得 ![]() 預(yù)測誤差可用估計標(biāo)準(zhǔn)誤差來衡量 ![]() m為趨勢方程中待確定的未知常數(shù)的個數(shù) 1.4.2.3 非線性趨勢預(yù)測 ![]() 1.4.2.4 指數(shù)曲線方程及其求解 1. 時間序列以幾何級數(shù)遞增或遞減 2. 一般形式為 ![]() 其中: (1) b0,b1為待定系數(shù) (2) 若b1>1,增長率隨著時間t的增加而增加 (3) 若b1<1,增長率隨著時間t的增加而降低 (4) 若b0>0,b1<1,趨勢值逐漸降低到以0為極限 求解方法: 1. 采用“線性化”手段將其化為對數(shù)直線形式 2. 根據(jù)最小二乘法,得到求解lgb0、lgb1的標(biāo)準(zhǔn)方程為 ![]() 3. 求出lgb0和lgb1后,再取其反對數(shù),即得算術(shù)形式的b0和b1 1.4.2.5 趨勢線的選擇 1.觀察散點圖 2.根據(jù)觀察數(shù)據(jù)本身,按以下標(biāo)準(zhǔn)選擇趨勢線 (1) 一次差大體相同,配合直線 (2) 二次差大體相同,配合二次曲線 (3) 對數(shù)的一次差大體相同,配合指數(shù)曲線 (4) 一次差的環(huán)比值大體相同,配合修正指數(shù)曲線 (5) 對數(shù)一次差的環(huán)比值大體相同,配合Gompertz曲線 (6) 倒數(shù)一次差的環(huán)比值大體相同,配合Logistic曲線 3. 比較估計標(biāo)準(zhǔn)誤差 1.4.3 復(fù)合型時間序列的分解預(yù)測 1.確定并分離季節(jié)成分 ?計算季節(jié)指數(shù),以確定時間序列中的季節(jié)成分 ?將季節(jié)成分從時間序列中分離出去,即用每一個觀測值除以相應(yīng)的季節(jié)指數(shù),以消除季節(jié)性 2.建立預(yù)測模型并進(jìn)行預(yù)測 ?對消除季節(jié)成分的序列建立適當(dāng)?shù)念A(yù)測模型,并根據(jù)這一模型進(jìn)行預(yù)測 3.計算出最后的預(yù)測值 ?用預(yù)測值乘以相應(yīng)的季節(jié)指數(shù),得到最終的預(yù)測值 1.4.3.1 確定并分離季節(jié)成分 【例】下表是一家啤酒生產(chǎn)企業(yè)2000—2005年各季度的啤酒銷售量數(shù)據(jù)。試計算各季的季節(jié)指數(shù) ![]() 圖形描述 ![]() 計算季節(jié)指數(shù) 1.刻畫序列在一個年度內(nèi)各月或季的典型季節(jié)特征 2.以其平均數(shù)等于100%為條件而構(gòu)成 3.反映某一月份或季度的數(shù)值占全年平均數(shù)值的大小 4.如果現(xiàn)象的發(fā)展沒有季節(jié)變動,則各期的季節(jié)指數(shù)應(yīng)等于100% 5.季節(jié)變動的程度是根據(jù)各季節(jié)指數(shù)與其平均數(shù)(100%)的偏差程度來測定 ?如果某一月份或季度有明顯的季節(jié)變化,則各期的季節(jié)指數(shù)應(yīng)大于或小于100% 季節(jié)指數(shù)-計算步驟 1.計算移動平均值(季度數(shù)據(jù)采用4項移動平均,月份數(shù)據(jù)采用12項移動平均),并將其結(jié)果進(jìn)行“中心化”處理 ?將移動平均的結(jié)果再進(jìn)行一次2項的移動平均,即得出“中心化移動平均值”(CMA) 2.計算移動平均的比值,也稱為季節(jié)比率 ?將序列的各觀察值除以相應(yīng)的中心化移動平均值,然后再計算出各比值的季度(或月份)平均值,即季節(jié)指數(shù) 3.季節(jié)指數(shù)調(diào)整 ?各季節(jié)指數(shù)的平均數(shù)應(yīng)等于1或100%,若根據(jù)第2步計算的季節(jié)比率的平均值不等于1時,則需要進(jìn)行調(diào)整 ?具體方法是:將第2步計算的每個季節(jié)比率的平均值除以它們的總平均值 季節(jié)指數(shù)-例題分析 ![]() ![]() ![]() 分離季節(jié)因素 1.將原時間序列除以相應(yīng)的季節(jié)指數(shù) ![]() 2.季節(jié)因素分離后的序列反映了在沒有季節(jié)因素影響的情況下時間序列的變化形態(tài) 季節(jié)性及其分離圖 ![]() 1.4.3.2 建立預(yù)測模型并進(jìn)行預(yù)測 1. 根據(jù)分離季節(jié)性因素的序列確定線性趨勢方程 ![]() 2. 根據(jù)趨勢方程進(jìn)行預(yù)測 ?該預(yù)測值不含季節(jié)性因素,即在沒有季節(jié)因素影響情況下的預(yù)測值 3. 計算最終的預(yù)測值 ?將回歸預(yù)測值乘以相應(yīng)的季節(jié)指數(shù) 1.4.3.3 計算最后的預(yù)測值 ![]() 2006年預(yù)測值 ![]() 實際值和最終預(yù)測值圖 ![]() |
|