日韩黑丝制服一区视频播放|日韩欧美人妻丝袜视频在线观看|九九影院一级蜜桃|亚洲中文在线导航|青草草视频在线观看|婷婷五月色伊人网站|日本一区二区在线|国产AV一二三四区毛片|正在播放久草视频|亚洲色图精品一区

分享

【干貨】2018年醫(yī)療人工智能技術(shù)與應(yīng)用白皮書

 自然大道張 2018-04-17


來源:互聯(lián)網(wǎng)醫(yī)療健康產(chǎn)業(yè)聯(lián)盟


【導(dǎo)讀】2017 年醫(yī)療人工智能發(fā)展迅速,產(chǎn)業(yè)格局風(fēng)起云涌。人工智能在醫(yī)療領(lǐng)域中的應(yīng)用已非常廣泛,包括醫(yī)學(xué)影像、臨床決策支持、語音識別、藥物挖掘、健康管理、病理學(xué)等眾多領(lǐng)域。本白皮書梳理和研究國際、國內(nèi)醫(yī)療人工智能的發(fā)展?fàn)顩r,總結(jié)醫(yī)療人工智能行業(yè)及基礎(chǔ)設(shè)施領(lǐng)域國內(nèi)外的技術(shù)發(fā)展特點和趨勢,分析我國醫(yī)療人工智能產(chǎn)業(yè)面臨的政策環(huán)境,為政府及產(chǎn)業(yè)界決策提供參考。


醫(yī)療人工智能技術(shù)與應(yīng)用白皮書(2018)


前 言




2017 年醫(yī)療人工智能發(fā)展迅速,產(chǎn)業(yè)格局風(fēng)起云涌。人工智能在醫(yī)療領(lǐng)域中的應(yīng)用已非常廣泛,包括醫(yī)學(xué)影像、臨床決策支持、語音識別、藥物挖掘、健康管理、病理學(xué)等眾多領(lǐng)域。人工智能技術(shù)呈現(xiàn)與醫(yī)療領(lǐng)域不斷融合的趨勢,其中數(shù)據(jù)資源、計算能力、算法模型等基礎(chǔ)條件的日臻成熟成為行業(yè)技術(shù)發(fā)展的重要力量。在新形勢下,我國醫(yī)療人工智能的發(fā)展面臨著機(jī)遇和挑戰(zhàn),技術(shù)能力不斷增強(qiáng),但產(chǎn)品和服務(wù)仍需完善。


本白皮書梳理和研究國際、國內(nèi)醫(yī)療人工智能的發(fā)展?fàn)顩r,總結(jié)醫(yī)療人工智能行業(yè)及基礎(chǔ)設(shè)施領(lǐng)域國內(nèi)外的技術(shù)發(fā)展特點和趨勢,分析我國醫(yī)療人工智能產(chǎn)業(yè)面臨的政策環(huán)境,為政府及產(chǎn)業(yè)界決策提供參考。


一、人工智能的發(fā)展 




  • (一)人工智能的技術(shù)演變



從上世紀(jì)八九十年代的 PC 時代到二十一世紀(jì)的互聯(lián)網(wǎng)時代,信息技術(shù)改造了人類的生產(chǎn)方式,提高了生產(chǎn)效率,改善了我們的生活。在進(jìn)入移動互聯(lián)網(wǎng)時代后,萬物互聯(lián)成為趨勢,但技術(shù)的限制導(dǎo)致移動互聯(lián)網(wǎng)難以催生出更多的新應(yīng)用和新業(yè)態(tài)。如今,人工智能儼然已經(jīng)成為這個時代最炙手可熱的技術(shù),甚至將成為未來十年內(nèi)信息技術(shù)產(chǎn)業(yè)發(fā)展的焦點。


人工智能的概念誕生于上世紀(jì) 50 年代,從最初的神經(jīng)網(wǎng)絡(luò)和模糊邏輯,到現(xiàn)在的深度學(xué)習(xí)、圖像搜索,人工智能技術(shù)經(jīng)歷了一系列的起伏。在 1956 年的一次科學(xué)會議上,人工智能的概念被首次確立:讓機(jī)器像人那樣思考和認(rèn)知,用計算機(jī)實現(xiàn)對人腦的模擬。上世紀(jì)50 年代至 70 年代是人工智能的早期發(fā)展階段,該階段人工智能主要用于解決一些小型的數(shù)學(xué)問題和邏輯問題。此時人工智能出現(xiàn)了一些代表性應(yīng)用,如機(jī)器定理證明、機(jī)器翻譯、專家系統(tǒng)、模式識別等,但是該階段人工智能仍可以被歸納為“弱人工智能”時代,其發(fā)展和應(yīng)用還遠(yuǎn)遠(yuǎn)不能達(dá)到人類的智慧水平。


1972 年,用于傳染性血液診斷和處方的知識工程系統(tǒng) MYCIN 研發(fā)成功,該事件標(biāo)志著人工智能進(jìn)入“專家系統(tǒng)”時期。專家系統(tǒng)的出現(xiàn)使得計算機(jī)可以和人進(jìn)行結(jié)合,通過對數(shù)據(jù)的分析解決一些實際的問題。但是專家系統(tǒng)的發(fā)展并不順利,也并未得到廣泛的應(yīng)用。其原因主要有兩個方面。一是專業(yè)知識的獲取需要行業(yè)內(nèi)長時間的積累,大量的行業(yè)數(shù)據(jù)在彼時難以全部植入專家系統(tǒng)。二是專家系統(tǒng)的程序主要由解釋性語言“LIPS”編寫,其開發(fā)效率和易用性較低,難以實現(xiàn)實際應(yīng)用。人工智能技術(shù)發(fā)展在彼時陷入的瓶頸使得人類開始思考,如何讓計算機(jī)自發(fā)理解和歸納數(shù)據(jù),掌握數(shù)據(jù)間的規(guī)律,即“機(jī)器學(xué)習(xí)”。


上世紀(jì) 90 年代末,IBM“深藍(lán)”計算機(jī)擊敗國際象棋大師卡斯帕羅夫再次引發(fā)了全球?qū)θ斯ぶ悄芗夹g(shù)的關(guān)注。但是受限于當(dāng)時的技術(shù)條件,人工智能尚無法支撐大規(guī)模的商業(yè)化應(yīng)用。2006 年,Geoffrey Hinton教授發(fā)表的論文《A Fast Learning Algorithm for Deep Belief Nets》中提出了深層神經(jīng)網(wǎng)絡(luò)逐層訓(xùn)練的高效算法,使當(dāng)時計算條件下的神經(jīng)網(wǎng)絡(luò)模型訓(xùn)練成為了可能。


  • (二)人工智能發(fā)展的三大因素



人工智能的概念雖然在上世紀(jì)已經(jīng)出現(xiàn),但由于彼時軟硬件條件的不成熟,數(shù)據(jù)資源的短缺,人工智能并未實現(xiàn)廣泛的應(yīng)用。如今,隨著算法、算力等基礎(chǔ)技術(shù)條件的日漸成熟,行業(yè)數(shù)據(jù)的積累,人工智能得以應(yīng)用在各個領(lǐng)域。

 

算力。GPU(圖形處理器)顯著提升了計算機(jī)的性能,擁有遠(yuǎn)超CPU 的并行計算能力。由于處理器的計算方式不同,CPU 擅長處理面向操作系統(tǒng)和應(yīng)用程序的通用計算任務(wù),而 GPU 擅長完成與顯示相關(guān)的數(shù)據(jù)處理。CPU 計算使用基于 x86 指令集的串行架構(gòu),適合快速完成計算任務(wù)。GPU 擁有多內(nèi)核處理并行計算,適合處理 3D 圖像中上百萬的圖像像素。此外,F(xiàn)PGA 也在越來越多地應(yīng)用在 AI 領(lǐng)域。FPGA(Field Programmable Gate Array)是在 PAL、GAL、CPLD 等可編程邏輯器件的基礎(chǔ)上進(jìn)一步發(fā)展的產(chǎn)物。它是作為專用集成電路領(lǐng)域中的一種半定制電路而出現(xiàn)的,既解決了全定制電路的不足,又克服了原有可編程邏輯器件門電路數(shù)有限的缺點。


一方面,F(xiàn)PGA 是可編程重構(gòu)的硬件,相比 GPU 有更強(qiáng)大的可調(diào)控能力;另一方面,與日增長的門資源和內(nèi)存帶寬使得它有更大的設(shè)計空間。由于深層神經(jīng)網(wǎng)絡(luò)包含多個隱藏層,大量神經(jīng)元之間的聯(lián)系計算具有高并行性的特點,具備支撐大規(guī)模并行計算的 FPGA 和 GPU 架構(gòu)已成為了現(xiàn)階段深度學(xué)習(xí)的主流硬件平臺。FPGA 和 GPU 架構(gòu)能夠根據(jù)應(yīng)用的特點定制計算和存儲的結(jié)構(gòu),方便算法進(jìn)行微調(diào)和優(yōu)化,實現(xiàn)硬件與算法的最佳匹配,獲得較高的性能功耗比。 


算法。深度學(xué)習(xí)是當(dāng)前研究和應(yīng)用的熱點算法,也是人工智能的重要領(lǐng)域。深度學(xué)習(xí)通過構(gòu)建多隱層模型和學(xué)習(xí)海量訓(xùn)練數(shù)據(jù),可以獲取到數(shù)據(jù)有用的特征。通過數(shù)據(jù)挖掘進(jìn)行海量數(shù)據(jù)處理,自動學(xué)習(xí)數(shù)據(jù)特征,尤其適用于包含少量未標(biāo)識數(shù)據(jù)的大數(shù)據(jù)集。深度學(xué)習(xí)采用層次網(wǎng)絡(luò)結(jié)構(gòu)進(jìn)行逐層特征變換,將樣本的特征表示變換到一個新的特征空間,從而使分類或預(yù)測更加容易。


深度學(xué)習(xí)驅(qū)動圖像識別精度大幅度提升。2012 年, 深度學(xué)習(xí)模型首次被應(yīng)用在圖像識別大賽(ImageNet),將錯誤率降至16.4%,一舉奪冠。2015 年,微軟通過152 層的深度網(wǎng)絡(luò),將圖像識別錯誤率降至 3.57%,而人眼的辨識錯誤率約在 5.1%,Deep Learning 模型的識別能力已經(jīng)超過了人眼。在2017 年的 ImageNet 挑戰(zhàn)賽中,Momenta 團(tuán)隊利用 SENet 架構(gòu)奪魁,他們的融合模型在測試集上獲得了 2.251% 的錯誤率,對比于去年第一名的結(jié)果 2.991%,獲得了將近 25% 的精度提升。



自 Hinton 提出 DBN(深度置信網(wǎng)絡(luò))以來,深度學(xué)習(xí)的發(fā)展經(jīng)歷了一個快速迭代的周期,其中卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network,CNN)目前已成為圖像識別領(lǐng)域應(yīng)用最廣泛的算法模型。在利用卷積神經(jīng)網(wǎng)絡(luò)(CNN)進(jìn)行圖像理解的過程中,圖像以像素矩陣形式作為原始輸入,第一層神經(jīng)網(wǎng)絡(luò)的學(xué)習(xí)功能通常是檢測特定方向和形狀的邊緣的存在與否,以及這些邊緣在圖像中的位置;第二層往往會檢測多種邊緣的特定布局,同時忽略邊緣位置的微小變化;第三層可以把特定的邊緣布局組合成為實際物體的某個部分;后續(xù)的層次將會通過全連接層來把這些部分組合起來,實現(xiàn)物體的識別。目前,CNN 已廣泛應(yīng)用于醫(yī)療健康行業(yè)特別是醫(yī)療影像輔助診斷,用以實現(xiàn)病變檢測和特定疾病的早期篩查。 


大數(shù)據(jù)。機(jī)器學(xué)習(xí)是人工智能的核心和基礎(chǔ),而數(shù)據(jù)和以往的經(jīng)驗是機(jī)器學(xué)習(xí)優(yōu)化計算機(jī)程序的性能標(biāo)準(zhǔn)。隨著大數(shù)據(jù)時代的到來,來自全球的海量數(shù)據(jù)為人工智能的發(fā)展提供了良好的基礎(chǔ)。據(jù) IDC 統(tǒng)計,2011 年全球數(shù)據(jù)總量已經(jīng)達(dá)到 1.8ZB,并以每兩年翻一番的速度增長,預(yù)計到 2020 年全球?qū)⒖偣矒碛?35ZB 的數(shù)據(jù)量,數(shù)據(jù)量增長近20 倍;數(shù)據(jù)規(guī)模方面,預(yù)計到 2020 年,全球大數(shù)據(jù)產(chǎn)業(yè)規(guī)模將達(dá)到2047 億美元,我國產(chǎn)業(yè)規(guī)模將突破萬億元 。



隨著電子病歷的實施,CT 影像、磁共振成像等放射圖像的普及,醫(yī)療行業(yè)的數(shù)據(jù)量已呈現(xiàn)指數(shù)級增長。據(jù)統(tǒng)計,2013 年全球醫(yī)療健康數(shù)據(jù)量為 153EB,預(yù)計年增長率為 48%。通過自然語言理解、機(jī)器學(xué)習(xí)等技術(shù),大量文本、視頻、圖像等非結(jié)構(gòu)化數(shù)據(jù)得以分析利用。來源于三甲醫(yī)院的電子病歷數(shù)據(jù)庫,基層醫(yī)院和體檢機(jī)構(gòu)的健康檔案數(shù)據(jù)庫,國家各統(tǒng)計部門的人口數(shù)據(jù)庫通過大數(shù)據(jù)技術(shù)可以實現(xiàn)互聯(lián)互通,形成個人完整生命周期的醫(yī)療健康大數(shù)據(jù),為人工智能技術(shù)在醫(yī)療健康行業(yè)的應(yīng)用提供了有力的支撐。


  • (三)人工智能上升為我國國家戰(zhàn)略



2017 年 7 月 20 日,國務(wù)院正式印發(fā)《新一代人工智能發(fā)展規(guī)劃》(以下簡稱《規(guī)劃》),提出了面向 2030 年我國新一代人工智能發(fā)展的指導(dǎo)思想、戰(zhàn)略目標(biāo)、重點任務(wù)和保障措施,部署構(gòu)筑我國人工智能發(fā)展的先發(fā)優(yōu)勢,加快建設(shè)創(chuàng)新型國家和世界科技強(qiáng)國,描繪了我國新一代人工智能發(fā)展的藍(lán)圖?!兑?guī)劃》指出以提升新一代人工智能科技創(chuàng)新能力為主攻方向,構(gòu)建開放協(xié)同的人工智能科技創(chuàng)新體系,把握人工智能技術(shù)屬性和社會屬性高度融合的特征,堅持人工智能研發(fā)攻關(guān)、產(chǎn)品應(yīng)用和產(chǎn)業(yè)培育“三位一體”推進(jìn)。


其中,對于涉及民生需求的醫(yī)療、養(yǎng)老等方面,《規(guī)劃》重點提出應(yīng)加快人工智能創(chuàng)新應(yīng)用,為公眾提供個性化、多元化、高品質(zhì)服務(wù),包括:推廣應(yīng)用人工智能治療新模式新手段,建立快速精準(zhǔn)的智能醫(yī)療體系;探索智慧醫(yī)院建設(shè),開發(fā)人機(jī)協(xié)同的手術(shù)機(jī)器人、智能診療助手,研發(fā)柔性可穿戴、生物兼容的生理監(jiān)測系統(tǒng),研發(fā)人機(jī)協(xié)同臨床智能診療方案,實現(xiàn)智能影像識別、病理分型和智能多學(xué)科會診;基于人工智能開展大規(guī)模基因組識別、蛋白組學(xué)、代謝組學(xué)等研究和新藥研發(fā),推進(jìn)醫(yī)藥監(jiān)管智能化;加強(qiáng)流行病智能監(jiān)測和防控。同時,國家也從重大科技專項角度支持醫(yī)療人工智能發(fā)展,醫(yī)學(xué)人工智能成為了 2018 年科技部重大專項的重點。


2017 年 5 月份,我國科技部發(fā)布《“十三五”衛(wèi)生與健康科技創(chuàng)新專項規(guī)劃》,提出加快引領(lǐng)性技術(shù)的創(chuàng)新突破和應(yīng)用發(fā)展,攻克一批急需突破的先進(jìn)臨床診治關(guān)鍵技術(shù)。重點部署生命組學(xué)、基因操作、精準(zhǔn)醫(yī)學(xué)、醫(yī)學(xué)人工智能、疾病早期發(fā)現(xiàn)、新型檢測與成像、生物治療、微創(chuàng)治療等前沿及共性技術(shù)研發(fā),提升我國醫(yī)學(xué)前沿領(lǐng)域原創(chuàng)水平,增強(qiáng)創(chuàng)新驅(qū)動源頭供給,加快前沿技術(shù)創(chuàng)新及臨床轉(zhuǎn)化。《“十三五”衛(wèi)生與健康科技創(chuàng)新專項規(guī)劃》對推進(jìn)醫(yī)學(xué)人工智能的技術(shù)發(fā)展指明了具體方向:開展醫(yī)學(xué)大數(shù)據(jù)分析和機(jī)器學(xué)習(xí)等技術(shù)研究,開發(fā)集中式智能和分布式智能等多種技術(shù)方案,重點支持機(jī)器智能輔助個性化診斷、精準(zhǔn)治療輔助決策支持系統(tǒng)、輔助康復(fù)和照看等研究,支撐智慧醫(yī)療發(fā)展。


二、醫(yī)療人工智能的寶貴價值 




醫(yī)療行業(yè)長期存在優(yōu)質(zhì)醫(yī)生資源分配不均,診斷誤診漏診率較高,醫(yī)療費用成本過高,放射科、病理科等科室醫(yī)生培養(yǎng)周期長,醫(yī)生資源供需缺口大等問題。隨著近些年深度學(xué)習(xí)技術(shù)的不斷進(jìn)步,人工智能逐步從前沿技術(shù)轉(zhuǎn)變?yōu)楝F(xiàn)實應(yīng)用。在醫(yī)療健康行業(yè),人工智能的應(yīng)用場景越發(fā)豐富,人工智能技術(shù)也逐漸成為影響醫(yī)療行業(yè)發(fā)展,提升醫(yī)療服務(wù)水平的重要因素。與互聯(lián)網(wǎng)技術(shù)在醫(yī)療行業(yè)的應(yīng)用不同,人工智能對醫(yī)療行業(yè)的改造包括生產(chǎn)力的提高,生產(chǎn)方式的改變,底層技術(shù)的驅(qū)動,上層應(yīng)用的豐富。通過人工智能在醫(yī)療領(lǐng)域的應(yīng)用,可以提高醫(yī)療診斷準(zhǔn)確率與效率;提高患者自診比例,降低患者對醫(yī)生的需求量;輔助醫(yī)生進(jìn)行病變檢測,實現(xiàn)疾病早期篩查;大幅提高新藥研發(fā)效率,降低制藥時間與成本。


  • (一)輔助醫(yī)生診斷,緩解漏診誤診問題



醫(yī)療數(shù)據(jù)中有超過 90%的數(shù)據(jù)來自于醫(yī)學(xué)影像,但是對醫(yī)學(xué)影像的診斷依賴于人工主觀分析。人工分析只能憑借經(jīng)驗去判斷,容易發(fā)生誤判。據(jù)中國醫(yī)學(xué)會數(shù)據(jù)資料顯示,中國臨床醫(yī)療每年的誤診人數(shù)約為 5700 萬人,總誤診率為 27.8%,器官異位誤診率為 60%。以心肌絞痛病癥為例,其早期臨床表現(xiàn)輕微,除胸口痛外,常會伴隨出現(xiàn)肩部到手部內(nèi)側(cè)疼痛,精神焦慮,血壓異常等尋常體征現(xiàn)象,對于門診醫(yī)生而言很容易發(fā)生誤診。對于病理醫(yī)生而言,從眾多細(xì)胞中依靠經(jīng)驗找到微小的癌變細(xì)胞難度較大,診斷錯誤現(xiàn)象時有發(fā)生。人工智能技術(shù)的出現(xiàn)已經(jīng)在一定程度上緩解了以上問題。


利用圖像識別技術(shù),通過大量學(xué)習(xí)醫(yī)學(xué)影像,人工智能輔助診斷產(chǎn)品可以輔助醫(yī)生進(jìn)行病灶區(qū)域定位,有效緩解漏診誤診問題。


  • (二)提高診斷效率,彌補(bǔ)資源供需缺口



據(jù)統(tǒng)計,我國每千人平均醫(yī)生擁有量僅為 2.1 人 2,醫(yī)生資源缺口問題較為嚴(yán)重。醫(yī)生資源缺口問題在影像科、病理科方面尤為嚴(yán)重。



目前我國醫(yī)學(xué)影像數(shù)據(jù)的年增長率約為 30%,而放射科醫(yī)師數(shù)量的年增長率僅為4.1%。放射科醫(yī)師數(shù)量的增長遠(yuǎn)不及影像數(shù)據(jù)增長。這個現(xiàn)象意味著放射科醫(yī)師在未來處理影像數(shù)據(jù)的壓力會越來越大,甚至遠(yuǎn)遠(yuǎn)超過負(fù)荷。供需不對稱的問題在病理方面表現(xiàn)尤甚。據(jù)統(tǒng)計,我國病理醫(yī)生缺口達(dá)到 10 萬,而培養(yǎng)病理醫(yī)生的周期卻很長,這意味著此問題短期內(nèi)將無法解決。面對嚴(yán)重的稀缺資源缺口問題,人工智能技術(shù)或?qū)斫鉀Q這個難題的答案。人工智能輔助診斷技術(shù)應(yīng)用在某些特定病種領(lǐng)域,甚至可以代替醫(yī)生完成疾病篩查任務(wù),這將大幅提高醫(yī)療機(jī)構(gòu)、醫(yī)生的工作效率,減少不合理的醫(yī)療支出。


  • (三)疾病風(fēng)險預(yù)警,提供健康顧問服務(wù)



多數(shù)疾病都是可以預(yù)防的,但是由于疾病通常在發(fā)病前期表征并不明顯,到病況加重之際才會被發(fā)現(xiàn)。雖然醫(yī)生可以借助工具進(jìn)行疾輔助預(yù)測,但人體的復(fù)雜性、疾病的多樣性會影響預(yù)測的準(zhǔn)確程度。人工智能技術(shù)與醫(yī)療健康可穿戴設(shè)備的結(jié)合可以實現(xiàn)疾病的風(fēng)險預(yù)測和實際干預(yù)。風(fēng)險預(yù)測包括對個人健康狀況的預(yù)警,以及對流行病等公共衛(wèi)生事件的監(jiān)控;干預(yù)則主要指針對不同患者的個性化的健康管理和健康咨詢服務(wù)。



  • (四)支持藥物研發(fā),提升制藥效率



利用傳統(tǒng)手段的藥物研發(fā)需要進(jìn)行大量的模擬測試,周期長、成本高。目前業(yè)界已嘗試?yán)萌斯ぶ悄荛_發(fā)虛擬篩選技術(shù),發(fā)現(xiàn)靶點、篩選藥物,以取代或增強(qiáng)傳統(tǒng)的高通量篩選(HTS)過程,提高潛在藥物的篩選速度和成功率。通過深度學(xué)習(xí)和自然語言處理技術(shù)可以理解和分析醫(yī)學(xué)文獻(xiàn)、論文、專利、基因組數(shù)據(jù)中的信息,從中找出相應(yīng)的候選藥物,并篩選出針對特定疾病有效的化合物,從而大幅縮減研發(fā)時間與成本。


  • (五)手術(shù)機(jī)器人,提升外科手術(shù)精準(zhǔn)度



智能手術(shù)機(jī)器人是一種計算機(jī)輔助的新型的人機(jī)外科手術(shù)平臺,主要利用空間導(dǎo)航控制技術(shù),將醫(yī)學(xué)影像處理輔助診斷系統(tǒng)、機(jī)器人以及外科醫(yī)師進(jìn)行了有效的結(jié)合。手術(shù)機(jī)器人不同于傳統(tǒng)的手術(shù)概念,外科醫(yī)生可以遠(yuǎn)離手術(shù)臺操縱機(jī)器進(jìn)行手術(shù),是世界微創(chuàng)外科領(lǐng)域一項革命性的突破。


目前達(dá)芬奇機(jī)器人是世界上最為先進(jìn)的微創(chuàng)外科手術(shù)系統(tǒng)之一,集成了三維高清視野、可轉(zhuǎn)腕手術(shù)器械和直覺式動作控制三大特性,使醫(yī)生將微創(chuàng)技術(shù)更廣泛地應(yīng)用于復(fù)雜的外科手術(shù)。相比于傳統(tǒng)手術(shù)需要輸血,會帶來傳染疾病等危險,機(jī)器人做手術(shù)則出血很少。此外,手術(shù)機(jī)器人可以保證精準(zhǔn)定位誤差不到 1 毫米,對于一些對精確切口要求非常高的手術(shù)實用性很高。


▌三、國內(nèi)外醫(yī)療人工智能發(fā)展?fàn)顩r及分析 




  • (一)市場規(guī)模及發(fā)展趨勢



據(jù)統(tǒng)計,到 2025 年人工智能應(yīng)用市場總值將達(dá)到 1270 億美元,其中醫(yī)療行業(yè)將占市場規(guī)模的五分之一。我國正處于醫(yī)療人工智能的風(fēng)口:2016 年中國人工智能 醫(yī)療市場規(guī)模達(dá)到 96.61 億元,增長37.9%;2017 年將超過 130 億元,增長 40.7%;2018 年有望達(dá)到 200億元。投資方面,據(jù) IDC 發(fā)布報告的數(shù)據(jù)顯示,2017 年全球?qū)θ斯ぶ悄芎驼J(rèn)知計算領(lǐng)域的投資將迅猛增長 60%,達(dá)到125億美元,在2020年將進(jìn)一步增加到 460 億美元。其中,針對醫(yī)療人工智能行業(yè)的投資也呈現(xiàn)逐年增長的趨勢。其中 2016 年總交易額為 7.48 億美元,總交易數(shù)為 90 起,均達(dá)到歷史最高值。



  • (二)國內(nèi)外行業(yè)發(fā)展熱點分析



國內(nèi)外科技巨頭均重視人工智能技術(shù)在醫(yī)療領(lǐng)域的布局與應(yīng)用。IBM 在2006年啟動Watson項目,于2014年投資10億美元成立Watson事業(yè)集團(tuán)。Watson 是一個通過自然語言處理和機(jī)器學(xué)習(xí),從非結(jié)構(gòu)化數(shù)據(jù)中洞察數(shù)據(jù)規(guī)律的技術(shù)平臺。Watson 將散落在各處的知識片段連接起來,進(jìn)行推理、分析、對比、歸納、總結(jié)和論證,獲取深入的洞察以及決策的證據(jù)。


2015 年,沃森健康(Watson Health)成立,專注于利用認(rèn)知計算系統(tǒng)為醫(yī)療健康行業(yè)提供解決方案。Watson 通過和一家癌癥中心合作,對大量臨床知識、基因組數(shù)據(jù)、病歷信息、醫(yī)學(xué)文獻(xiàn)進(jìn)行深度學(xué)習(xí),建立了基于證據(jù)的臨床輔助決策支持系統(tǒng)。目前該系統(tǒng)已應(yīng)用于腫瘤、心血管疾病、糖尿病等領(lǐng)域的診斷和治療,并于 2016 年進(jìn)入中國市場,在國內(nèi)眾多醫(yī)院進(jìn)行了推廣。


Watson 在醫(yī)療行業(yè)的成功應(yīng)用標(biāo)志著認(rèn)知型醫(yī)療時代的到來,該解決方案不僅可以提高診斷的準(zhǔn)確率和效率,還可以提供個性化的癌癥治療方案。此外,谷歌、微軟等也都紛紛布局醫(yī)療 AI。2014 年谷歌收購DeepMind 公司,后開發(fā)知名的人工智能程序 AlphaGo。在基礎(chǔ)技術(shù)層面,谷歌的開源平臺 TensorFlow 是當(dāng)今應(yīng)用最廣泛的深度學(xué)習(xí)框架。


在醫(yī)療健康領(lǐng)域,Google 旗下的 DeepMind Health 和英國國家醫(yī)療服務(wù)體系 NHS(National Health Service)展開合作,DeepMind Health可以訪問 NHS 的患者數(shù)據(jù)進(jìn)行深度學(xué)習(xí),訓(xùn)練有關(guān)腦部癌癥的識別模型。微軟將人工智能技術(shù)用于醫(yī)療健康計劃“Hanover”,尋找最有效的藥物和治療方案。此外,微軟研究院有多個關(guān)于醫(yī)療健康的研究項目。Biomedical Natural Language Processing 利用機(jī)器學(xué)習(xí)從醫(yī)學(xué)文獻(xiàn)和電子病歷中挖掘有效信息,結(jié)合患者基因信息研發(fā)用于輔助醫(yī)生進(jìn)行診療的推薦決策系統(tǒng)。


國內(nèi)科技巨頭也紛紛開始在醫(yī)療人工智能領(lǐng)域布局,各家公司均投入大量資金與資源,但各自的發(fā)展重點與發(fā)展策略并不相同。例如,阿里健康以云平臺為依托,結(jié)合自主機(jī)器學(xué)習(xí)平臺 PAI2.0 構(gòu)建了堅實而完善的基礎(chǔ)技術(shù)支撐。同時,阿里健康與浙江大學(xué)醫(yī)學(xué)院附屬第一醫(yī)院、浙江大學(xué)第二附屬醫(yī)院等醫(yī)院、上海交通大學(xué)醫(yī)學(xué)院附屬新華醫(yī)院以及第三方醫(yī)學(xué)影像中心建立了合作伙伴關(guān)系,重點打造醫(yī)學(xué)影像智能診斷平臺,提供三維影像重建、遠(yuǎn)程智能診斷等服務(wù)。


此外,阿里云聯(lián)合英特爾、零氪科技聯(lián)合舉辦了天池醫(yī)療 AI 大賽。該大賽面向全球第一高發(fā)惡性腫瘤——肺癌,以肺部小結(jié)節(jié)病變的智能識別、診斷為課題,開展大數(shù)據(jù)與人工智能技術(shù)在肺癌早期影像診斷上的應(yīng)用探索。大賽基于阿里云天池大數(shù)據(jù)平臺,邀請全球生物、醫(yī)療、人工智能等眾多領(lǐng)域的校內(nèi)團(tuán)隊、專家學(xué)者、醫(yī)療企業(yè)參賽。參賽者使用大賽提供的數(shù)千份胸部 CT 掃描數(shù)據(jù)集進(jìn)行預(yù)訓(xùn)練,在此基礎(chǔ)上開發(fā)算法模型,檢測 CT 影像中的肺部結(jié)節(jié)區(qū)域。準(zhǔn)確率排名靠前的參賽者將進(jìn)入決賽,決賽要求參賽者提交診斷結(jié)果的 CSV 文件,并標(biāo)記檢測到的結(jié)節(jié)坐標(biāo),最終根據(jù)參賽者給出的坐標(biāo)信息判斷結(jié)節(jié)是否檢測正確,如果結(jié)節(jié)落在以參考標(biāo)準(zhǔn)為中心半徑為 R 的球體中,則認(rèn)為檢測正確。


大賽通過探索早期肺癌精確智能診斷的優(yōu)秀算法,提升早期肺癌檢測的準(zhǔn)確度,降低臨床上常見的假陽性的誤診發(fā)生,實現(xiàn)“早發(fā)現(xiàn),早診斷,早治療”。同時,本次大賽能夠激發(fā)傳統(tǒng)醫(yī)學(xué)與機(jī)器學(xué)習(xí)的碰撞與融合,為整體學(xué)科發(fā)展進(jìn)行探路與思辨,推動了人工智能技術(shù)在醫(yī)療影像診斷上的應(yīng)用。


騰訊在人工智能領(lǐng)域的布局涵蓋基礎(chǔ)研究、產(chǎn)品研發(fā)、投資與孵化等多個方面。騰訊在 2016 年建立了人工智能實驗室 AI lab,專注于 AI 技術(shù)的基礎(chǔ)研究和應(yīng)用探索。2017 年 11 月,在“2017 騰訊全球合作伙伴大會”上騰訊宣布了自己的“AI 生態(tài)計劃”,旨在開放AI 技術(shù),并結(jié)合資本機(jī)構(gòu)孵化醫(yī)療 AI 創(chuàng)業(yè)項目。2017 年 4 月,騰訊向碳云智能投資 1.5 億美元。


碳云智能由原華大基因 CEO 王俊牽頭組建,致力于建立人工智能的內(nèi)核模型,并對健康風(fēng)險進(jìn)行預(yù)警、進(jìn)行精準(zhǔn)診療和個性化醫(yī)療。在產(chǎn)品研發(fā)方面,騰訊在 2017 年 8 月推出了自己首個應(yīng)用在醫(yī)學(xué)領(lǐng)域的 AI 產(chǎn)品騰訊覓影。騰訊覓影把圖像識別、深度學(xué)習(xí)等領(lǐng)先的技術(shù)與醫(yī)學(xué)跨界融合,可以輔助醫(yī)生對食管癌進(jìn)行篩查,有效提高篩查準(zhǔn)確度,促進(jìn)準(zhǔn)確治療。除了食管癌,騰訊覓影未來也將支持早期肺癌、糖尿病性視網(wǎng)膜病變、乳腺癌等病種的早期篩查。


在國際上權(quán)威的肺結(jié)節(jié)檢測比賽 LUNA 中,中國企業(yè)參賽隊伍阿里云 ET 和科大訊飛均取得了優(yōu)異的成績??拼笥嶏w醫(yī)學(xué)影像團(tuán)隊以92.3%的召回率刷新了世界記錄。召回率是指成功發(fā)現(xiàn)的結(jié)節(jié)數(shù)在樣本數(shù)據(jù)中總節(jié)結(jié)數(shù)的占比。


召回率是評測診斷準(zhǔn)確率的重要指標(biāo),召回率低代表遺漏了患者的關(guān)鍵病灶信息,因此科大訊飛團(tuán)隊采用了多尺度、多模型集成學(xué)習(xí)的方法顯著提升了召回率,同時針對假陽性導(dǎo)致的醫(yī)生重復(fù)檢測問題,創(chuàng)新性地使用結(jié)節(jié)分割和特征圖融合的策略進(jìn)行改善。在診斷效率方面,科大訊飛團(tuán)隊采用 3D CNN 模型來計算特征圖,并在特征圖上進(jìn)行檢測,并通過預(yù)訓(xùn)練大幅提升了檢測效率,實現(xiàn)薄層 CT 的秒級別處理。


▌四、我國醫(yī)療人工智能細(xì)分領(lǐng)域 




人工智能與醫(yī)療的結(jié)合方式較多,就醫(yī)流程方面包括診前、診中、診后;適用對象方面包括醫(yī)院、醫(yī)生、患者、藥企、檢驗機(jī)構(gòu)等;從賦能醫(yī)療行業(yè)的角度分析,包括降低醫(yī)療成本,提高診斷效率等多種模式。我國醫(yī)療人工智能企業(yè)聚焦的應(yīng)用場景集中在虛擬助理、病歷與文獻(xiàn)分析、醫(yī)療影像輔助診斷、藥物研發(fā)、基因測序等領(lǐng)域。


  • (一)虛擬助理



虛擬助理是指通過語音識別、自然語言處理等技術(shù),將患者的病癥描述與標(biāo)準(zhǔn)的醫(yī)學(xué)指南作對比,為用戶提供醫(yī)療咨詢、自診、導(dǎo)診等服務(wù)的信息系統(tǒng)。智能問診是虛擬助理廣泛應(yīng)用的場景之一。


智能問診是指機(jī)器通過語義識別與用戶進(jìn)行溝通,聽懂用戶對于癥狀的描述,再根據(jù)醫(yī)療信息數(shù)據(jù)庫進(jìn)行對比和深度學(xué)習(xí),對患者提供診療建議,包括用戶可能患有的健康隱患,應(yīng)當(dāng)在醫(yī)院進(jìn)行復(fù)診的門診科目等。通用型的虛擬助手如蘋果 Siri、微軟 Cortana 等與用戶溝通時,用戶可以自由輸入,由虛擬助手進(jìn)行語義理解。醫(yī)療領(lǐng)域的虛擬助手與通用型的虛擬助手和用戶的溝通方式不同,因為普通用戶難以使用準(zhǔn)確的醫(yī)學(xué)用語去描述自己的問題。因此,醫(yī)療虛擬助手在幫助用戶進(jìn)行智能問診時通常采用選擇題的形式。



智能問診在醫(yī)生端和用戶端均發(fā)揮了較大的作用。在醫(yī)生端,智能問診可以輔助醫(yī)生診斷,尤其是受限于基層醫(yī)療機(jī)構(gòu)全科醫(yī)生數(shù)量、質(zhì)量的不足,醫(yī)療設(shè)備條件的欠缺,基層醫(yī)療成為了我國分級診療發(fā)展的瓶頸。人工智能虛擬助手可以幫助基層醫(yī)生進(jìn)行對一些常見病的篩查,以及重大疾病的預(yù)警與監(jiān)控,幫助基層醫(yī)生更好地完成轉(zhuǎn)診的工作,這是人工智能問診在醫(yī)生端的價值體現(xiàn)。


在用戶端,人工智能虛擬助手能夠幫助普通用戶完成健康咨詢、導(dǎo)診等服務(wù)。在很多情況下,用戶身體只是稍感不適,并不需要進(jìn)入醫(yī)院進(jìn)行就診。人工智能虛擬助手可以根據(jù)用戶的描述定位到用戶的健康問題,提供輕問診服務(wù)和用藥指導(dǎo)。2017 年,康夫子、大數(shù)醫(yī)達(dá)等公司研發(fā)的智能預(yù)問診系統(tǒng)得到了在多家醫(yī)院的落地應(yīng)用。預(yù)問診系統(tǒng)是基于自然語言理解、醫(yī)療知識圖譜及自然語言生成等技術(shù)實現(xiàn)的問診系統(tǒng)?;颊咴诰驮\前使用預(yù)問診系統(tǒng)填寫病情相關(guān)信息,由系統(tǒng)生成規(guī)范、詳細(xì)的門診電子病歷發(fā)送給醫(yī)生。


預(yù)問診系統(tǒng)采用層次轉(zhuǎn)移的設(shè)計架構(gòu)模擬醫(yī)生進(jìn)行問診,既能有邏輯地像醫(yī)生一樣詢問基本信息、疾病、癥狀、治療情況、既往史等信息,同時可以圍繞任一癥狀、病史等進(jìn)行細(xì)節(jié)特征的問診。除問診外,預(yù)問診系統(tǒng)基于自然語言生成技術(shù)自動生成規(guī)范、詳細(xì)的問診報告,主要包括:患者基本信息、主訴、現(xiàn)病史、既往史和過敏史五個部分。此外,語音識別技術(shù)為醫(yī)生書寫病歷,為普通用戶在醫(yī)院導(dǎo)診提供了極大的便利。當(dāng)放射科醫(yī)生、外科醫(yī)生、口腔科醫(yī)生工作時雙手無法空閑出來去書寫病歷,智能語音錄入可以解放醫(yī)生的雙手,幫助醫(yī)生通過語音輸入完成查閱資料、文獻(xiàn)精準(zhǔn)推送等工作,并將醫(yī)生口述的醫(yī)囑按照患者基本信息、檢查史、病史、檢查指標(biāo)、檢查結(jié)果等形式形成結(jié)構(gòu)化的電子病歷,大幅提升了醫(yī)生的工作效率。


科大訊飛的智能語音產(chǎn)品“云醫(yī)聲”為了應(yīng)對醫(yī)院科室內(nèi)嘈雜的環(huán)境,達(dá)到更好的語音處理效果,開發(fā)了醫(yī)生專用麥克風(fēng),可以過濾掉噪音及干擾信息,將醫(yī)生口述的內(nèi)容轉(zhuǎn)換成文字。目前,訊飛醫(yī)療的語音轉(zhuǎn)錄準(zhǔn)確率已超過 97%,同時推出了 22 種方言的版本,并已在北大口腔、瑞金醫(yī)院等超過 20 家醫(yī)院落地使用??拼笥嶏w的另一款產(chǎn)品“曉醫(yī)”導(dǎo)診機(jī)器人利用科大訊飛的智能語音和人工智能技術(shù),能夠通過與患者進(jìn)行對話理解患者的需求,實現(xiàn)智能地院內(nèi)導(dǎo)診,告訴患者科室位置、應(yīng)就診的科室,并解答患者就診過程中遇到的其他問題,實現(xiàn)導(dǎo)醫(yī)導(dǎo)診,進(jìn)一步助力分診?!皶葬t(yī)”機(jī)器人目前已在安徽省立醫(yī)院、北京 301 醫(yī)院等多家醫(yī)院投入使用。 


  • (二)病歷與文獻(xiàn)分析



電子病歷是在傳統(tǒng)病歷基礎(chǔ)上,記錄醫(yī)生與病人的交互過程以及病情發(fā)展情況的電子化病情檔案,包含病案首頁、檢驗結(jié)果、住院記錄、手術(shù)記錄、醫(yī)囑等信息。其中既有結(jié)構(gòu)化數(shù)據(jù),也包括大量自由文本輸入的非結(jié)構(gòu)化數(shù)據(jù)。對電子病歷及醫(yī)學(xué)文獻(xiàn)中的海量醫(yī)療大數(shù)據(jù)進(jìn)行分析,有利于促進(jìn)醫(yī)學(xué)研究,同時也為醫(yī)療器械、藥物的研發(fā)提供了基礎(chǔ)。人工智能利用機(jī)器學(xué)習(xí)和自然語言處理技術(shù)可以自動抓取來源于異構(gòu)系統(tǒng)的病歷與文獻(xiàn)數(shù)據(jù),并形成結(jié)構(gòu)化的醫(yī)療數(shù)據(jù)庫。


大數(shù)醫(yī)達(dá)、惠每醫(yī)療、森億智能等企業(yè)正是基于自己構(gòu)建的知識圖譜,形成了供醫(yī)生使用的臨床決策支持產(chǎn)品,為醫(yī)生的診斷提供輔助,包括病情評估、診療建議、藥物禁忌等。



構(gòu)建醫(yī)療知識圖譜的過程需經(jīng)過醫(yī)學(xué)知識抽取、醫(yī)學(xué)知識融合的過程。在醫(yī)學(xué)知識抽取過程中,傳統(tǒng)的基于醫(yī)學(xué)詞典及規(guī)則的實體抽取方法存在諸多弊端。首先,目前沒有醫(yī)學(xué)詞典能夠完整地囊括所有類型的生物命名實體,此外同一詞語根據(jù)上下文語境的不同可能會指代的是不同實體,因此簡單的文本匹配算法無法識別實體。近年來,深度學(xué)習(xí)開始被廣泛應(yīng)用于醫(yī)學(xué)實體識別,目前實驗結(jié)果表明基于BiLSTM-CRF 的模型能夠達(dá)到最好的識別效果。


由于數(shù)據(jù)來源的多樣性,在醫(yī)學(xué)知識融合的過程中存在近義詞需要進(jìn)行歸類,目前分類回歸樹算法、SVM 分類方法在實體對齊的過程中可以實現(xiàn)良好的效果。和其他行業(yè)相比,分散在醫(yī)療信息化各個業(yè)務(wù)系統(tǒng)中的數(shù)據(jù)包含管理、臨床、區(qū)域人口信息等多種數(shù)據(jù),復(fù)雜性更高,隱藏價值更大。


新華三等企業(yè)在 2017 年大力推進(jìn)利用大數(shù)據(jù)技術(shù)挖掘醫(yī)療數(shù)據(jù)價值,助力人工智能與精準(zhǔn)醫(yī)療。通過大數(shù)據(jù)平臺充分挖掘各種類型數(shù)據(jù)的價值,幫助實現(xiàn)輔助診斷、精準(zhǔn)醫(yī)療、臨床科研等多種目標(biāo)。大數(shù)據(jù)平臺通過自然語言處理技術(shù),對電子病歷中的自由文本進(jìn)行分詞、實體識別、依存句法分析、信息提取等操作,實現(xiàn)自由文本結(jié)構(gòu)化。在實現(xiàn)病歷結(jié)構(gòu)化的基礎(chǔ)上,利用機(jī)器學(xué)習(xí)聚類分析建立診斷建議模型,從而為醫(yī)生的臨床決策提供支持。


對電子病歷的結(jié)構(gòu)化和數(shù)據(jù)挖掘,可以幫助一線人員及科研人員挖掘疾病規(guī)律,進(jìn)行疾病相關(guān)性分析、患病原因分析、疾病譜分析等,并建立新的研究課題。例如,新華三在協(xié)助醫(yī)院進(jìn)行關(guān)于卵巢癌的相關(guān)課題研究時,得出血小板與淋巴細(xì)胞的關(guān)系對卵巢癌診斷具有重要價值。


  • (三)醫(yī)療影像輔助診斷



醫(yī)療影像數(shù)據(jù)是醫(yī)療數(shù)據(jù)的重要組成部分,從數(shù)量上看超過 90%以上的醫(yī)療數(shù)據(jù)都是影像數(shù)據(jù),從產(chǎn)生數(shù)據(jù)的設(shè)備來看包括 CT、X 光、MRI、PET 等醫(yī)療影像數(shù)據(jù)。據(jù)統(tǒng)計,醫(yī)學(xué)影像數(shù)據(jù)年增長率為 63%,而放射科醫(yī)生數(shù)量年增長率僅為 2%,放射科醫(yī)生供給缺口很大。


人工智能技術(shù)與醫(yī)療影像的結(jié)合有望緩解此類問題。人工智能技術(shù)在醫(yī)療影像的應(yīng)用主要指通過計算機(jī)視覺技術(shù)對醫(yī)療影像進(jìn)行快速讀片和智能診斷。人工智能在醫(yī)學(xué)影像中應(yīng)用主要分為兩部分: 一是感知數(shù)據(jù),即通過圖像識別技術(shù)對醫(yī)學(xué)影像進(jìn)行分析,獲取有效信息;二是數(shù)據(jù)學(xué)習(xí)、訓(xùn)練環(huán)節(jié),通過深度學(xué)習(xí)海量的影像數(shù)據(jù)和臨床診斷數(shù)據(jù),不斷對模型進(jìn)行訓(xùn)練,促使其掌握診斷能力。目前,人工智能技術(shù)與醫(yī)療影像診斷的結(jié)合場景包括肺癌檢查、糖網(wǎng)眼底檢查、食管癌檢查以及部分疾病的核醫(yī)學(xué)檢查和病理檢查等。利用人工智能技術(shù)進(jìn)行肺部腫瘤良性惡性的判斷步驟主要包括:數(shù)據(jù)收集、數(shù)據(jù)預(yù)處理、圖像分割、肺結(jié)節(jié)標(biāo)記、模型訓(xùn)練、分類預(yù)測。


首先要獲取放射性設(shè)備如 CT 掃描的序列影像,并對圖像進(jìn)行預(yù)處理以消除原 CT 圖像中的邊界噪聲,然后利用分割算法生成肺部區(qū)域圖像,并對肺結(jié)節(jié)區(qū)域進(jìn)行標(biāo)記。數(shù)據(jù)獲取后,對 3D 卷積神經(jīng)網(wǎng)絡(luò)的模型進(jìn)行訓(xùn)練,以實現(xiàn)在肺部影像中尋找結(jié)節(jié)位置并對結(jié)節(jié)性質(zhì)進(jìn)行分類判斷。



食管癌是常見惡性腫瘤之一,據(jù)統(tǒng)計,我國 2015 年新發(fā)食管癌人數(shù)為 47.7 萬,占全球患病人數(shù)的 50%。針對食管癌的早期治療是診療的關(guān)鍵,食管癌早期五年內(nèi)治療的生存率超過 90%,而進(jìn)展期/晚期五年生存率則小于 15%。但是由于基層醫(yī)療機(jī)構(gòu)醫(yī)生缺乏足夠的認(rèn)知以及篩查手段,導(dǎo)致我國對早期食管癌的檢出率較低。


利用人工智能技術(shù)輔助醫(yī)生對食管癌進(jìn)行篩查,可以有效提高篩查準(zhǔn)確度與檢測效率。騰訊公司研發(fā)的覓影 AI 針對食管癌的早期篩查準(zhǔn)確率可超過 90%,并且完成一次內(nèi)鏡檢查的時間已經(jīng)可控制在數(shù)秒之內(nèi)。阿爾茨海默病,俗稱老年癡呆癥,是一種發(fā)病進(jìn)程緩慢、隨著時間不斷惡化的持續(xù)性神經(jīng)功能障礙,該疾病的真正成因至今仍不明確,沒有可以阻止或逆轉(zhuǎn)病程的治療。在我國,對該病癥的重視程度不高,現(xiàn)已造成就診率低、診斷率低、治療率低的“三低”局面。根據(jù)國際阿爾茨海默病聯(lián)合會報告,2015 年中國阿爾茨海默病患者超過 950 萬,患病人數(shù)已居世界第一,且仍在快速增長,2050 年或?qū)⑦_(dá)到 3000 萬。


阿爾茨海默癥在患病早期是可以干預(yù)的,但檢測卻相對困難,越早檢測出這種病癥,患者就越有機(jī)會提早尋求治療,減緩病情的影響。阿爾茨海默病的臨床診斷需要通過神經(jīng)心理學(xué)測驗、血液學(xué)檢查、結(jié)構(gòu)影像學(xué)或功能影像學(xué)檢查、腦電圖等方式綜合判斷。



阿爾茨海默病的診療難點在于癥狀以及檢查指標(biāo)等的非特異性,較難實現(xiàn)早期診斷。雅森科技等企業(yè)通過輸入核磁、腦電圖和量表三種不同類型的數(shù)據(jù),綜合運用機(jī)器訓(xùn)練、統(tǒng)計分析和深度學(xué)習(xí)的方法,找出患者是否患病與輸入信息之間的關(guān)系。對于阿爾茨海默病診斷所用到的人工智能,已不只是傳統(tǒng)意義上的深度學(xué)習(xí)對醫(yī)學(xué)影像的識別,而是在此基礎(chǔ)上找出多種信息源之間的聯(lián)系,并基于這三種數(shù)據(jù)訓(xùn)練多模態(tài)神經(jīng)網(wǎng)絡(luò)訓(xùn)練模型,從而提前兩至三年預(yù)測老年癡呆發(fā)病的可能性以及病情發(fā)展的階段。


糖網(wǎng)病是糖尿病引起的視網(wǎng)膜病變。據(jù)統(tǒng)計,我國約 5 億人處于糖尿病前期,糖尿病患者約有 1.1 億人,糖網(wǎng)病患者約有 3000 萬。


對糖尿病患者進(jìn)行眼底篩查具有重要意義,因為糖網(wǎng)病患者通常早期難以發(fā)覺患有疾病,癥狀表現(xiàn)不明顯,只有經(jīng)過眼底早期篩查,及時發(fā)現(xiàn)糖網(wǎng)病,及早干預(yù),才能有效抵制疾病的發(fā)生。相較于其他疾病的診斷需要結(jié)合臨床信息,人工智能在糖網(wǎng)眼底領(lǐng)域的檢查具備更高的可操作性,因為僅針對眼部圖像的檢查就具備較高的診療價值。針對滲出或者出血等病變,AI 系統(tǒng)也可以實現(xiàn)較高的準(zhǔn)確率。在 2017年,眾多企業(yè)、科研機(jī)構(gòu)均進(jìn)行了關(guān)于此方面的研究。


例如,中國移動通信有限公司研究院與沈陽何氏眼科醫(yī)院有限公司深度合作,研發(fā)眼底圖像質(zhì)量評估、糖尿病視網(wǎng)膜病變嚴(yán)重程度分級、糖網(wǎng)病變病灶位置檢測等智能算法。首先對所采集的眼底圖像質(zhì)量是否合格(即是否滿足病理分析要求)進(jìn)行評估,并對質(zhì)量合格的眼底圖像,分析其為左眼或右眼、是否存在眼底疾病、糖網(wǎng)病變嚴(yán)重程度的分級(如有糖網(wǎng)),并檢測眼底圖像中出現(xiàn)微動脈瘤、出血、滲出等糖網(wǎng)病變病灶的具體位置,最終自動生成結(jié)構(gòu)化篩查報告,為患者提供轉(zhuǎn)診建議。


中國移動研究院面向基層醫(yī)院、眼視光中心、社區(qū)服務(wù)站、鄉(xiāng)村診所等基層篩查場景,將專業(yè)眼科影像設(shè)備采集的眼底圖像通過固網(wǎng)或移動蜂窩網(wǎng)上傳至云端,利用先進(jìn)的人工智能、深度學(xué)習(xí)技術(shù)進(jìn)行分析,實現(xiàn)眼底致盲疾病的自動篩查、糖尿病視網(wǎng)膜病變(如有)嚴(yán)重程度分級以及病灶位置檢測和跟蹤,其結(jié)果供臨床醫(yī)生參考,施行必要的干預(yù)、治療,使廣泛、低成本、快速響應(yīng)的規(guī)模化篩查成為可能。病理是醫(yī)學(xué)界的金標(biāo)準(zhǔn),也是許多疾病診斷的最終確定指標(biāo)。


但是,病理醫(yī)生通常必須花費大量的時間檢查病理切片,因為病理醫(yī)生需要在上億級像素的病理圖片中識別微小的癌細(xì)胞。對于同一種疾病的病理診斷,不同的醫(yī)生往往會得出不同的判斷結(jié)論,足見病理診斷存在的誤診問題。人工智能技術(shù)為數(shù)字病理診斷帶來了技術(shù)革新,幫助病理醫(yī)生提高效率避免遺漏。相較于 CT、X 光等影像的人工智能輔助診斷,病理人工智能輔助診斷難度更大,因為病理的診斷既要觀察整體,還要觀察局部;不只要學(xué)習(xí)細(xì)胞特征,還要學(xué)習(xí)其生物行為。


我國已有蘭丁高科、泰立瑞、迪英加科技等眾多企業(yè)開始研究利用人工智能輔助數(shù)字病理診斷,他們開發(fā)的人工智能輔助診斷系統(tǒng)針對乳腺癌、宮頸癌等疾病的病理檢查已實現(xiàn)較高的準(zhǔn)確率。



  • (四)藥物研發(fā)



人工智能正在重構(gòu)新藥研發(fā)的流程,大幅提升藥物制成的效率。傳統(tǒng)藥物研發(fā)需要投入大量的時間與金錢,制藥公司平均成功研發(fā)一款新藥需要 10 億美元及 10 年左右的時間。藥物研發(fā)需要經(jīng)歷靶點篩選、藥物挖掘、臨床試驗、藥物優(yōu)化等階段。目前我國制藥企業(yè)紛紛布局 AI 領(lǐng)域,主要應(yīng)用在新藥發(fā)現(xiàn)和臨床試驗階段。



靶點篩選。靶點是指藥物與機(jī)體生物大分子的結(jié)合部位,通常涉及受體、酶、離子通道、轉(zhuǎn)運體、免疫系統(tǒng)、基因等?,F(xiàn)代新藥研究與開發(fā)的關(guān)鍵首先是尋找、確定和制備藥物篩選靶—分子藥靶。傳統(tǒng)尋找靶點的方式是將市面上已有的藥物與人體身上的一萬多個靶點進(jìn)行交叉匹配以發(fā)現(xiàn)新的有效的結(jié)合點。人工智能技術(shù)有望改善這一過程。AI 可以從海量醫(yī)學(xué)文獻(xiàn)、論文、專利、臨床試驗信息等非結(jié)構(gòu)化數(shù)據(jù)中尋找到可用的信息,并提取生物學(xué)知識,進(jìn)行生物化學(xué)預(yù)測。據(jù)預(yù)測,該方法有望將藥物研發(fā)時間和成本各縮短約 50%。


藥物挖掘。藥物挖掘也可以稱為先導(dǎo)化合物篩選,是要將制藥行業(yè)積累的數(shù)以百萬計的小分子化合物進(jìn)行組合實驗,尋找具有某種生物活性和化學(xué)結(jié)構(gòu)的化合物,用于進(jìn)一步的結(jié)構(gòu)改造和修飾。人工智能技術(shù)在該過程中的應(yīng)用有兩種方案,一是開發(fā)虛擬篩選技術(shù)取代高通量篩選,二是利用圖像識別技術(shù)優(yōu)化高通量篩選過程。利用圖像識別技術(shù),可以評估不同疾病的細(xì)胞模型在給藥后的特征與效果,預(yù)測有效的候選藥物。


病人招募。據(jù)統(tǒng)計,90%的臨床試驗未能及時招募到足夠數(shù)量和質(zhì)量的患者。利用人工智能技術(shù)對患者病歷進(jìn)行分析,可以更精準(zhǔn)的挖掘到目標(biāo)患者,提高招募患者效率。


藥物晶型預(yù)測。藥物晶型對于制藥企業(yè)十分重要,熔點、溶解度等因素決定了藥物臨床效果,同時具有巨大的專利價值。利用人工智能可以高效地動態(tài)配置藥物晶型,防止漏掉重要晶型,縮短晶型開發(fā)周期,減少成本。


  • (五)基因測序



基因測序是一種新型基因檢測技術(shù),它通過分析測定基因序列,可用于臨床的遺傳病診斷、產(chǎn)前篩查、罹患腫瘤預(yù)測與治療等領(lǐng)域。單個人類基因組擁有 30 億個堿基對,編碼約 23000 個含有功能性的基因,基因檢測就是通過解碼從海量數(shù)據(jù)中挖掘有效信息。目前高通量測序技術(shù)的運算層面主要為解碼和記錄,較難以實現(xiàn)基因解讀,所以從基因序列中挖掘出的有效信息十分有限。人工智能技術(shù)的介入可改善目前的瓶頸。通過建立初始數(shù)學(xué)模型,將健康人的全基因組序列和RNA序列導(dǎo)入模型進(jìn)行訓(xùn)練,讓模型學(xué)習(xí)到健康人的 RNA剪切模式。


之后通過其他分子生物學(xué)方法對訓(xùn)練后的模型進(jìn)行修正,最后對照病例數(shù)據(jù)檢驗?zāi)P偷臏?zhǔn)確性。


目前,IBM 沃森,國內(nèi)的華大基因、博奧生物、金域檢驗等龍頭企業(yè)均已開始自己的人工智能布局。以金域檢驗為例,金域檢驗利用其綜合檢驗檢測技術(shù)平臺,以疾病為導(dǎo)向設(shè)立檢測中心,融合生物技術(shù)與人工智能等新一代信息技術(shù)為廣大患者提供專業(yè)化的臨床檢驗服務(wù)。金域檢驗的基因組檢測中心擁有全基因組掃描、熒光原位雜交、細(xì)胞遺傳學(xué)、傳統(tǒng) PCR 信息平臺,并利用基因測序領(lǐng)域中最具變革性的新技術(shù)之高通量測序技術(shù)(HTS)為臨床提供高通量、大規(guī)模、自動化及全方位的基因檢測服務(wù)。同時,金域檢驗依托覆蓋全國 90%以上的人口所在地區(qū)、年服務(wù)醫(yī)療機(jī)構(gòu) 21000 多家和年標(biāo)本量超 4000萬例的覆蓋全國不同地域、不同民族、不同年齡層次的海量醫(yī)療檢測樣本數(shù)據(jù),創(chuàng)建了具有廣州特色的“精準(zhǔn)醫(yī)療”檢驗檢測大數(shù)據(jù)研究院。 


▌五、面臨的問題與挑戰(zhàn) 




  • (一)數(shù)據(jù)是行業(yè)發(fā)展的瓶頸,積累與創(chuàng)新是解決問題的關(guān)鍵



數(shù)據(jù)是人工智能技術(shù)最重要的因素之一。對于機(jī)器學(xué)習(xí)而言,模型越復(fù)雜、越具有強(qiáng)表達(dá)能力越容易降低對未來數(shù)據(jù)的解釋能力,而專注于解釋訓(xùn)練數(shù)據(jù)。這種現(xiàn)象會導(dǎo)致訓(xùn)練數(shù)據(jù)效果很好,但遇到未知的測試數(shù)據(jù)預(yù)測效果會大幅降低,即發(fā)生過擬合現(xiàn)象,從而也就需要更多的數(shù)據(jù)來避免該問題的發(fā)生,以保證訓(xùn)練的模型對新的數(shù)據(jù)也能有良好的預(yù)測表現(xiàn)。對于醫(yī)療人工智能而言,數(shù)據(jù)的重要性更為明顯。以醫(yī)療影像輔助診斷公司為例,企業(yè)訓(xùn)練模型的數(shù)據(jù)來源通常是公開數(shù)據(jù)集,或者企業(yè)與個別醫(yī)院合作獲取的影像數(shù)據(jù)。


這種模式在企業(yè)創(chuàng)業(yè)初期可以維持,但是當(dāng)企業(yè)發(fā)展到一定階段時弊端會開始出現(xiàn)。以肺結(jié)節(jié) CT 篩查為例,企業(yè)通常與個別醫(yī)院展開合作,獲取該醫(yī)院 CT 設(shè)備的數(shù)據(jù)。但是,目前市面上廣泛流通的 CT 設(shè)備商有七到八家,機(jī)型則達(dá)到了上百種,企業(yè)在與醫(yī)院合作時是針對某一機(jī)型的設(shè)備進(jìn)行的數(shù)據(jù)訓(xùn)練,該模型在適用于其他機(jī)型時,如果一些諸如層厚、電流、電壓、掃描時間等參數(shù)不同,模型需要重新針對新機(jī)型進(jìn)行數(shù)據(jù)預(yù)訓(xùn)練。除此以外,病人受檢測時的姿勢(平躺或者趴窩),CT 長寬 512 像素或者 768 像素的差別,不同排數(shù)機(jī)器的層厚差異以及薄層重構(gòu)算法都是會對模型訓(xùn)練產(chǎn)生影響的因素。


因此,數(shù)據(jù)問題的解決是保證醫(yī)療影像輔助診斷產(chǎn)品是否能夠廣泛應(yīng)用的關(guān)鍵,廣泛開展合作,加深數(shù)據(jù)的積累以及技術(shù)上的創(chuàng)新或是下一步行業(yè)發(fā)展的重點。


  • (二)醫(yī)療 AI 產(chǎn)品需要實現(xiàn)從試驗向臨床應(yīng)用的突破



目前,業(yè)內(nèi)針對肺結(jié)節(jié)、糖網(wǎng)病檢查等場景的醫(yī)療人工智能產(chǎn)品診斷準(zhǔn)確率普遍很高,但是真實情況并非如此樂觀。企業(yè)在訓(xùn)練自己模型時通常都有自己的數(shù)據(jù)庫,各自的算法都是按照自己的數(shù)據(jù)進(jìn)行訓(xùn)練,然后以自己的數(shù)據(jù)來驗證準(zhǔn)確性。在沒有得到臨床驗證前,基于標(biāo)準(zhǔn)或特定數(shù)據(jù)集的實驗室測試結(jié)果并不具備較大的意義,因為實際臨床應(yīng)用的場景是非常復(fù)雜的。具體體現(xiàn)在以下幾個方面:


  • 1.數(shù)據(jù)采樣


以糖網(wǎng)病篩查為例,瞳孔較小、晶狀體渾濁等人群的免散瞳眼底彩照,圖像質(zhì)量往往達(dá)不到篩查的要求。此外,受限于成本因素,很多基層醫(yī)療機(jī)構(gòu)使用的是手持眼底相機(jī),成像質(zhì)量堪憂。


  • 2.數(shù)據(jù)格式 


在病理方面,數(shù)據(jù)缺少通用的國際標(biāo)準(zhǔn),各醫(yī)院使用的病理切片掃描儀廠家也并不一致,各掃描儀廠商的掃描文件數(shù)據(jù)格式多數(shù)為私有格式,數(shù)據(jù)的標(biāo)準(zhǔn)化需要各廠家與醫(yī)院積極配合,開放自己的數(shù)據(jù)存儲格式。


  • 3.診斷標(biāo)準(zhǔn)


目前圖像識別技術(shù)在醫(yī)療影像輔助診斷上的應(yīng)用已經(jīng)取得了比較好的應(yīng)用,技術(shù)上也取得了較大的突破,但是醫(yī)療影像輔助診斷產(chǎn)品下一步應(yīng)當(dāng)完善自己的算法,避免“就圖論圖”。以甲狀腺結(jié)節(jié)診斷為例,醫(yī)生診斷的依據(jù)并非只是彩超的拍片結(jié)果,還要結(jié)合甲狀腺功能化驗,查看抗體的相關(guān)表現(xiàn)。因此,將臨床表征信息、患者基本信息、LIS 指標(biāo)、隨訪記錄等都作為預(yù)測模型的因子,實現(xiàn)多模態(tài)的診斷體系將是醫(yī)療影像輔助診斷產(chǎn)品下一步重點突破的方向。


  • (三)加深合作,可持續(xù)的商業(yè)模式亟待建立



現(xiàn)在的醫(yī)療人工智能企業(yè)多數(shù)是依靠單點醫(yī)療機(jī)構(gòu)開展工作,合作方式較為單一,數(shù)據(jù)作為醫(yī)院資產(chǎn)也難以供企業(yè)放置于院外使用。


此外,醫(yī)療人工智能產(chǎn)品想以銷售軟件的形式讓醫(yī)院付費,不論從計費方式、軟件資質(zhì)等方面都較為困難。因此,建立可持續(xù)的商業(yè)模式是醫(yī)療人工智能行業(yè)長久發(fā)展的關(guān)鍵。與政府、醫(yī)院開展合作,向醫(yī)療機(jī)構(gòu)提供服務(wù)或是解決方案之一。例如,四川華西醫(yī)院與希氏異構(gòu)醫(yī)療科技有限公司聯(lián)合成立華西-希氏醫(yī)學(xué)人工智能研發(fā)中心,在消化內(nèi)鏡人工智能技術(shù)研發(fā)方面開展了合作。


正如華西醫(yī)院院長李為民所言:“華西-希氏醫(yī)學(xué)人工智能研發(fā)中心,既是四川大學(xué)華西醫(yī)院產(chǎn)學(xué)研用協(xié)同創(chuàng)新的重大科技轉(zhuǎn)化平臺,也是華西醫(yī)院以開放姿態(tài)釋放醫(yī)院資源的重要標(biāo)志”。目前華西醫(yī)院與公司的合作已取得了進(jìn)展,醫(yī)生可以上傳胃鏡圖像,通過在云端進(jìn)行數(shù)據(jù)分析,可以對胃癌、靜脈曲張、息肉等常見胃鏡檢查結(jié)果進(jìn)行篩查,目前準(zhǔn)確率超過 90%。基于 AI 的消化胃鏡智能系統(tǒng)可以提供高質(zhì)量的檢測結(jié)果,提高醫(yī)生診斷效率,提升基層醫(yī)療機(jī)構(gòu)的服務(wù)水平。另外一個案例是,一款用于肺癌早期篩查的 APP 與上海某區(qū)政府簽署合作協(xié)議,企業(yè)進(jìn)入社區(qū)基層為廣大居民提供疾病篩查服務(wù),政府給予相應(yīng)補(bǔ)貼。


  • (四)明確醫(yī)療責(zé)任主體,劃清權(quán)責(zé)范圍



人工智能不論在學(xué)習(xí)能力還是成本控制方面,都具備發(fā)揮能力的空間,可以為普通用戶和醫(yī)生帶來幫助。但是,人工智能幫助進(jìn)行輔助診斷在醫(yī)療責(zé)任認(rèn)定方面也存在問題和挑戰(zhàn)。例如,用戶在使用醫(yī)療虛擬助手表達(dá)主訴時,可能會漏掉甚至錯誤地進(jìn)行描述,導(dǎo)致虛擬助手提供的建議是不符合用戶原本的疾病情況的。因此,目前監(jiān)管部門禁止虛擬助手軟件提供任何疾病的診斷建議,只允許提供用戶健康輕問診咨詢服務(wù)。


我國監(jiān)管部門對于利用人工智能技術(shù)提供診斷功能是審核要求非常嚴(yán)格。在 2017 年 CFDA 發(fā)布的新版《醫(yī)療器械分類目錄》中的分類規(guī)定,若診斷軟件通過算法提供診斷建議,僅有輔助診斷功能不直接給出診斷結(jié)論,則按照二類醫(yī)療器械申報認(rèn)證;如果對病變部位進(jìn)行自動識別并提供明確診斷提示,則必須按照第三類醫(yī)療器械進(jìn)行臨床試驗認(rèn)證管理。未來,應(yīng)進(jìn)一步明確針對 AI 診斷進(jìn)入臨床應(yīng)用的法律標(biāo)準(zhǔn),做出 AI 診斷的主體在法律上是醫(yī)生還是醫(yī)療器械,AI 診斷出現(xiàn)缺陷或醫(yī)療過失的判斷依據(jù)等問題。


  • (五)制定人才培養(yǎng)計劃,搶占戰(zhàn)略制高點



人才專業(yè)水平是人工智能發(fā)展的關(guān)鍵因素之一。目前,我國從事人工智能行業(yè)的從業(yè)人員數(shù)不足 5 萬人,每年通過高校培養(yǎng)出來的技術(shù)人員也不足 2000 人,人工智能人才缺口較大。相比于數(shù)據(jù)資源較為充足,我國的人工智能人才儲備較發(fā)達(dá)國家差距較大。據(jù)統(tǒng)計,在人工智能行業(yè)從業(yè)者當(dāng)中,美國擁有 10 年以上工作經(jīng)驗的人才占比接近 50%,而我國只有不到 25%。此外,我國同時掌握醫(yī)療與人工智能知識的復(fù)合型人才更是匱乏。


因此,只有解決人才問題,我國才能突破醫(yī)療人工智能行業(yè)發(fā)展的瓶頸?;诖吮尘?,我國高度重視人工智能培養(yǎng),并制定《新一代人工智能發(fā)展規(guī)劃》國家戰(zhàn)略,指出要把高端人才隊伍建設(shè)作為人工智能發(fā)展的重中之重。2017 年 11 月,科技部在京召開新一代人工智能發(fā)展規(guī)劃暨重大科技項目啟動會,科技部、發(fā)改委、財政部等聯(lián)合成立人工智能規(guī)劃推進(jìn)辦公室,宣布首批四個專項開放創(chuàng)新平臺的依托單位,其中包括依托騰訊公司建設(shè)醫(yī)療影像國家人工智能開放創(chuàng)新平臺。我國現(xiàn)已通過建設(shè)國家級開放平臺集聚高端人才,通過鼓勵深度交叉學(xué)科研究,推進(jìn)產(chǎn)學(xué)研合作的新模式加速人才培養(yǎng)。


    本站是提供個人知識管理的網(wǎng)絡(luò)存儲空間,所有內(nèi)容均由用戶發(fā)布,不代表本站觀點。請注意甄別內(nèi)容中的聯(lián)系方式、誘導(dǎo)購買等信息,謹(jǐn)防詐騙。如發(fā)現(xiàn)有害或侵權(quán)內(nèi)容,請點擊一鍵舉報。
    轉(zhuǎn)藏 分享 獻(xiàn)花(0

    0條評論

    發(fā)表

    請遵守用戶 評論公約

    類似文章 更多