描述符是一種在多個屬性上重復(fù)利用同一個存取邏輯的方式,他能'劫持'那些本對于self.__dict__的操作。描述符通常是一種包含__get__、__set__、__delete__三種方法中至少一種的類,給人的感覺是「把一個類的操作托付與另外一個類」。靜態(tài)方法、類方法、property都是構(gòu)建描述符的類。 我們先看一個簡單的描述符的例子(基于我之前的分享的Python高級編程改編,這個PPT建議大家去看看): class MyDescriptor(object):
_value = ''
def __get__(self, instance, klass):
return self._value
def __set__(self, instance, value):
self._value = value.swapcase()
class Swap(object):
swap = MyDescriptor()
注意MyDescriptor要用新式類。調(diào)用一下: In [1]: from descriptor_example import Swap
In [2]: instance = Swap()
In [3]: instance.swap # 沒有報AttributeError錯誤,因為對swap的屬性訪問被描述符類重載了
Out[3]: ''
In [4]: instance.swap = 'make it swap' # 使用__set__重新設(shè)置_value
In [5]: instance.swap
Out[5]: 'MAKE IT SWAP'
In [6]: instance.__dict__ # 沒有用到__dict__:被劫持了
Out[6]: {}
這就是描述符的威力。我們熟知的staticmethod、classmethod如果你不理解,那么看一下用Python實現(xiàn)的效果可能會更清楚了: >>> class myStaticMethod(object):
... def __init__(self, method):
... self.staticmethod = method
... def __get__(self, object, type=None):
... return self.staticmethod
...
>>> class myClassMethod(object):
... def __init__(self, method):
... self.classmethod = method
... def __get__(self, object, klass=None):
... if klass is None:
... klass = type(object)
... def newfunc(*args):
... return self.classmethod(klass, *args)
... return newfunc
在實際的生產(chǎn)項目中,描述符有什么用處呢?首先看MongoEngine中的Field的用法: from mongoengine import *
class Metadata(EmbeddedDocument):
tags = ListField(StringField())
revisions = ListField(IntField())
class WikiPage(Document):
title = StringField(required=True)
text = StringField()
metadata = EmbeddedDocumentField(Metadata)
有非常多的Field類型,其實它們的基類就是一個描述符,我簡化下,大家看看實現(xiàn)的原理: class BaseField(object):
name = None
def __init__(self, **kwargs):
self.__dict__.update(kwargs)
...
def __get__(self, instance, owner):
return instance._data.get(self.name)
def __set__(self, instance, value):
...
instance._data[self.name] = value
很多項目的源代碼看起來很復(fù)雜,在抽絲剝繭之后,其實原理非常簡單,復(fù)雜的是業(yè)務(wù)邏輯。 接著我們再看Flask的依賴Werkzeug中的cached_property: class _Missing(object):
def __repr__(self):
return 'no value'
def __reduce__(self):
return '_missing'
_missing = _Missing()
class cached_property(property):
def __init__(self, func, name=None, doc=None):
self.__name__ = name or func.__name__
self.__module__ = func.__module__
self.__doc__ = doc or func.__doc__
self.func = func
def __set__(self, obj, value):
obj.__dict__[self.__name__] = value
def __get__(self, obj, type=None):
if obj is None:
return self
value = obj.__dict__.get(self.__name__, _missing)
if value is _missing:
value = self.func(obj)
obj.__dict__[self.__name__] = value
return value
其實看類的名字就知道這是緩存屬性的,看不懂沒關(guān)系,用一下: class Foo(object):
@cached_property
def foo(self):
print 'Call me!'
return 42
調(diào)用下: In [1]: from cached_property import Foo
...: foo = Foo()
...:
In [2]: foo.bar
Call me!
Out[2]: 42
In [3]: foo.bar
Out[3]: 42
可以看到在從第二次調(diào)用bar方法開始,其實用的是緩存的結(jié)果,并沒有真的去執(zhí)行。 說了這么多描述符的用法。我們寫一個做字段驗證的描述符: class Quantity(object):
def __init__(self, name):
self.name = name
def __set__(self, instance, value):
if value > 0:
instance.__dict__[self.name] = value
else:
raise ValueError('value must be > 0')
class Rectangle(object):
height = Quantity('height')
width = Quantity('width')
def __init__(self, height, width):
self.height = height
self.width = width
@property
def area(self):
return self.height * self.width
我們試一試: In [1]: from rectangle import Rectangle
In [2]: r = Rectangle(10, 20)
In [3]: r.area
Out[3]: 200
In [4]: r = Rectangle(-1, 20)
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
ipython-input-5-5a7fc56e8a> in module>()
----> 1 r = Rectangle(-1, 20)
/Users/dongweiming/mp/2017-03-23/rectangle.py in __init__(self, height, width)
15
16 def __init__(self, height, width):
---> 17 self.height = height
18 self.width = width
19
/Users/dongweiming/mp/2017-03-23/rectangle.py in __set__(self, instance, value)
7 instance.__dict__[self.name] = value
8 else:
----> 9 raise ValueError('value must be > 0')
10
11
ValueError: value must be > 0
看到了吧,我們在描述符的類里面對傳值進行了驗證。ORM就是這么玩的! 但是上面的這個實現(xiàn)有個缺點,就是不太自動化,你看 height =Quantity('height') ,這得讓屬性和Quantity的name都叫做height,那么可不可以不用指定name呢?當(dāng)然可以,不過實現(xiàn)的要復(fù)雜很多: class Quantity(object):
__counter = 0
def __init__(self):
cls = self.__class__
prefix = cls.__name__
index = cls.__counter
self.name = '_{}#{}'.format(prefix, index)
cls.__counter += 1
def __get__(self, instance, owner):
if instance is None:
return self
return getattr(instance, self.name)
...
class Rectangle(object):
height = Quantity()
width = Quantity()
...
Quantity的name相當(dāng)于類名+計時器,這個計時器每調(diào)用一次就疊加1,用此區(qū)分。有一點值得提一提,在__get__中的: if instance is None:
return self
在很多地方可見,比如之前提到的MongoEngine中的BaseField。這是由于直接調(diào)用Rectangle.height這樣的屬性時候會報AttributeError, 因為描述符是實例上的屬性。 PS:這個靈感來自《Fluent Python》,書中還有一個我認為設(shè)計非常好的例子。就是當(dāng)要驗證的內(nèi)容種類很多的時候,如何更好地擴展的問題。現(xiàn)在假設(shè)我們除了驗證傳入的值要大于0,還得驗證不能為空和必須是數(shù)字(當(dāng)然三種驗證在一個方法中驗證也是可以接受的,我這里就是個演示),我們先寫一個abc的基類: class Validated(abc.ABC):
__counter = 0
def __init__(self):
cls = self.__class__
prefix = cls.__name__
index = cls.__counter
self.name = '_{}#{}'.format(prefix, index)
cls.__counter += 1
def __get__(self, instance, owner):
if instance is None:
return self
else:
return getattr(instance, self.name)
def __set__(self, instance, value):
value = self.validate(instance, value)
setattr(instance, self.name, value)
@abc.abstractmethod
def validate(self, instance, value):
'''return validated value or raise ValueError'''
現(xiàn)在新加一個檢查類型,新增一個繼承了Validated的、包含檢查的validate方法的類就可以了: class Quantity(Validated):
def validate(self, instance, value):
if value <> 0:
raise ValueError('value must be > 0')
return value
class NonBlank(Validated):
def validate(self, instance, value):
value = value.strip()
if len(value) == 0:
raise ValueError('value cannot be empty or blank')
return value
前面展示的描述符都是一個類,那么可不可以用函數(shù)來實現(xiàn)呢?也是可以的: def quantity():
try:
quantity.counter += 1
except AttributeError:
quantity.counter = 0
storage_name = '_{}:{}'.format('quantity', quantity.counter)
def qty_getter(instance):
return getattr(instance, storage_name)
def qty_setter(instance, value):
if value > 0:
setattr(instance, storage_name, value)
else:
raise ValueError('value must be > 0')
return property(qty_getter, qty_setter)
|