遞推公式描述了由數(shù)列中的已知項獲得數(shù)列中新的項的方式,確定新的項所需要的已知項的數(shù)目就是遞推公式的階數(shù).如遞推公式 如果一個數(shù)列的遞推公式形如 其中 例 已知 分析我們希望將這個遞推公式變形成可以用累加法或累乘法求通項的形式.設(shè) 與遞推公式對比得到 即 一般地,對于遞推公式 來說,定義它的特征方程為 從而 整理得 于是 兩邊同時除以 再通過累加法即求得數(shù)列的通項公式. 在前面的問題中 從而有 由累加法(或直接由 著名的契波那契數(shù)列就是二階線性遞推數(shù)列. 斐波那契(Fibonacci Leonardo)是意大利著名的數(shù)學(xué)家,他提出了著名的"兔子問題":如果每對兔子每月繁殖一對小兔子,而這對兔子在出生后第二個月長成大兔子,并可以再繁殖一對新的小兔子,在不考慮兔子死亡的前提下,從一對小兔子開始,到第 個月共有多少對兔子. 記第 個月有 對兔子,那么我們就得到一個數(shù)列 因為第 這個數(shù)列 : 大家可以試試用特征根法求出它的通項公式 雖然斐波那契數(shù)列的通項公式看上去很復(fù)雜,但別忘了它的每一項其實都是正整數(shù).另外,波那契數(shù)列還有很多特點,比如它的前一項與后一項的比值越來越接近 由 數(shù)海拾貝 供稿。 長按識別二維碼關(guān)注數(shù)海拾貝 ![]() 點擊下方“閱讀原文”訪問好玩的數(shù)學(xué)興趣部落,一個更加自由開放的數(shù)學(xué)交流社區(qū),連續(xù)簽到7天將獲鐵桿粉稱號。 |
|