日韩黑丝制服一区视频播放|日韩欧美人妻丝袜视频在线观看|九九影院一级蜜桃|亚洲中文在线导航|青草草视频在线观看|婷婷五月色伊人网站|日本一区二区在线|国产AV一二三四区毛片|正在播放久草视频|亚洲色图精品一区

分享

深入淺出Win32多線程程序設(shè)計(jì)(二)

 My鏡像站 2011-11-16

深入淺出Win32多線程程序設(shè)計(jì)之線程控制

WIN32線程控制主要實(shí)現(xiàn)線程的創(chuàng)建、終止、掛起和恢復(fù)等操作,這些操作都依賴于WIN32提供的一組API和具體編譯器的C運(yùn)行時(shí)庫(kù)函數(shù)。

  1.線程函數(shù)

  在啟動(dòng)一個(gè)線程之前,必須為線程編寫一個(gè)全局的線程函數(shù),這個(gè)線程函數(shù)接受一個(gè)32位的LPVOID作為參數(shù),返回一個(gè)UINT,線程函數(shù)的結(jié)構(gòu)為:

UINT ThreadFunction(LPVOID pParam)
{
 //線程處理代碼
 return0;
}

  在線程處理代碼部分通常包括一個(gè)死循環(huán),該循環(huán)中先等待某事情的發(fā)生,再處理相關(guān)的工作:

while(1)
{
 WaitForSingleObject(…,…);//或WaitForMultipleObjects(…)
 //Do something
}

  一般來(lái)說(shuō),C++的類成員函數(shù)不能作為線程函數(shù)。這是因?yàn)樵陬愔卸x的成員函數(shù),編譯器會(huì)給其加上this指針。請(qǐng)看下列程序:

#include "windows.h"
#include <process.h>
class ExampleTask
{
 public:
  void taskmain(LPVOID param);
  void StartTask();
};
void ExampleTask::taskmain(LPVOID param)
{}

void ExampleTask::StartTask()
{
 _beginthread(taskmain,0,NULL);
}

int main(int argc, char* argv[])
{
 ExampleTask realTimeTask;
 realTimeTask.StartTask();
 return 0;
}

  程序編譯時(shí)出現(xiàn)如下錯(cuò)誤:

error C2664: '_beginthread' : cannot convert parameter 1 from 'void (void *)' to 'void (__cdecl *)(void *)'
None of the functions with this name in scope match the target type

  再看下列程序:

#include "windows.h"
#include <process.h>
class ExampleTask
{
 public:
  void taskmain(LPVOID param);
};

void ExampleTask::taskmain(LPVOID param)
{}

int main(int argc, char* argv[])
{
 ExampleTask realTimeTask;
 _beginthread(ExampleTask::taskmain,0,NULL);
 return 0;
}

  程序編譯時(shí)會(huì)出錯(cuò):

error C2664: '_beginthread' : cannot convert parameter 1 from 'void (void *)' to 'void (__cdecl *)(void *)'
None of the functions with this name in scope match the target type

  如果一定要以類成員函數(shù)作為線程函數(shù),通常有如下解決方案:

 ?。?)將該成員函數(shù)聲明為static類型,去掉this指針;

  我們將上述二個(gè)程序改變?yōu)椋?br>
#include "windows.h"
#include <process.h>
class ExampleTask
{
 public:
  void static taskmain(LPVOID param);
  void StartTask();
};

void ExampleTask::taskmain(LPVOID param)
{}

void ExampleTask::StartTask()
{
 _beginthread(taskmain,0,NULL);
}

int main(int argc, char* argv[])
{
 ExampleTask realTimeTask;
 realTimeTask.StartTask();
 return 0;
}

#include "windows.h"
#include <process.h>
class ExampleTask
{
 public:
  void static taskmain(LPVOID param);
};

void ExampleTask::taskmain(LPVOID param)
{}

int main(int argc, char* argv[])
{
 _beginthread(ExampleTask::taskmain,0,NULL);
 return 0;
}

  均編譯通過(guò)。

   將成員函數(shù)聲明為靜態(tài)雖然可以解決作為線程函數(shù)的問(wèn)題,但是它帶來(lái)了新的問(wèn)題,那就是static成員函數(shù)只能訪問(wèn)static成員。解決此問(wèn)題的一種 途徑是可以在調(diào)用類靜態(tài)成員函數(shù)(線程函數(shù))時(shí)將this指針作為參數(shù)傳入,并在改線程函數(shù)中用強(qiáng)制類型轉(zhuǎn)換將this轉(zhuǎn)換成指向該類的指針,通過(guò)該指針 訪問(wèn)非靜態(tài)成員。

 ?。?)不定義類成員函數(shù)為線程函數(shù),而將線程函數(shù)定義為類的友元函數(shù)。這樣,線程函數(shù)也可以有類成員函數(shù)同等的權(quán)限;

  我們將程序修改為:

#include "windows.h"
#include <process.h>
class ExampleTask
{
 public:
  friend void taskmain(LPVOID param);
  void StartTask();
};

void taskmain(LPVOID param)
{
 ExampleTask * pTaskMain = (ExampleTask *) param;
 //通過(guò)pTaskMain指針引用
}

void ExampleTask::StartTask()
{
 _beginthread(taskmain,0,this);
}
int main(int argc, char* argv[])
{
 ExampleTask realTimeTask;
 realTimeTask.StartTask();
 return 0;
}

 ?。?)可以對(duì)非靜態(tài)成員函數(shù)實(shí)現(xiàn)回調(diào),并訪問(wèn)非靜態(tài)成員,此法涉及到一些高級(jí)技巧,在此不再詳述。

2.創(chuàng)建線程

  進(jìn)程的主線程由操作系統(tǒng)自動(dòng)生成,Win32提供了CreateThread API來(lái)完成用戶線程的創(chuàng)建,該API的原型為:

HANDLE CreateThread(
 LPSECURITY_ATTRIBUTES lpThreadAttributes,//Pointer to a SECURITY_ATTRIBUTES structure
 SIZE_T dwStackSize, //Initial size of the stack, in bytes.
 LPTHREAD_START_ROUTINE lpStartAddress,
 LPVOID lpParameter, //Pointer to a variable to be passed to the thread
 DWORD dwCreationFlags, //Flags that control the creation of the thread
 LPDWORD lpThreadId //Pointer to a variable that receives the thread identifier
);

  如果使用C/C++語(yǔ)言編寫多線程應(yīng)用程序,一定不能使用操作系統(tǒng)提供的CreateThread API,而應(yīng)該使用C/C++運(yùn)行時(shí)庫(kù)中的_beginthread(或_beginthreadex),其函數(shù)原型為:

uintptr_t _beginthread(
 void( __cdecl *start_address )( void * ), //Start address of routine that begins execution of new thread
 unsigned stack_size, //Stack size for new thread or 0.
 void *arglist //Argument list to be passed to new thread or NULL
);
uintptr_t _beginthreadex(
 void *security,//Pointer to a SECURITY_ATTRIBUTES structure
 unsigned stack_size,
 unsigned ( __stdcall *start_address )( void * ),
 void *arglist,
 unsigned initflag,//Initial state of new thread (0 for running or CREATE_SUSPENDED for suspended);
 unsigned *thrdaddr
);

  _beginthread函數(shù)與Win32 API 中的CreateThread函數(shù)類似,但有如下差異:

  (1)通過(guò)_beginthread函數(shù)我們可以利用其參數(shù)列表arglist將多個(gè)參數(shù)傳遞到線程;

 ?。?)_beginthread 函數(shù)初始化某些 C 運(yùn)行時(shí)庫(kù)變量,在線程中若需要使用 C 運(yùn)行時(shí)庫(kù)。

  3.終止線程

  線程的終止有如下四種方式:

 ?。?)線程函數(shù)返回;

  (2)線程自身調(diào)用ExitThread 函數(shù)即終止自己,其原型為:

VOID ExitThread(UINT fuExitCode );

  它將參數(shù)fuExitCode設(shè)置為線程的退出碼。

  注意:如果使用C/C++編寫代碼,我們應(yīng)該使用C/C++運(yùn)行時(shí)庫(kù)函數(shù)_endthread (_endthreadex)終止線程,決不能使用ExitThread!
_endthread 函數(shù)對(duì)于線程內(nèi)的條件終止很有用。例如,專門用于通信處理的線程若無(wú)法獲取對(duì)通信端口的控制,則會(huì)退出。

 ?。?)同一進(jìn)程或其他進(jìn)程的線程調(diào)用TerminateThread函數(shù),其原型為:

BOOL TerminateThread(HANDLE hThread,DWORD dwExitCode);

  該函數(shù)用來(lái)結(jié)束由hThread參數(shù)指定的線程,并把dwExitCode設(shè)成該線程的退出碼。當(dāng)某個(gè)線程不再響應(yīng)時(shí),我們可以用其他線程調(diào)用該函數(shù)來(lái)終止這個(gè)不響應(yīng)的線程。

 ?。?)包含線程的進(jìn)程終止。

  最好使用第1種方式終止線程,第2~4種方式都不宜采用。

  4.掛起與恢復(fù)線程

  當(dāng)我們創(chuàng)建線程的時(shí)候,如果給其傳入CREATE_SUSPENDED標(biāo)志,則該線程創(chuàng)建后被掛起,我們應(yīng)使用ResumeThread恢復(fù)它:

DWORD ResumeThread(HANDLE hThread);

  如果ResumeThread函數(shù)運(yùn)行成功,它將返回線程的前一個(gè)暫停計(jì)數(shù),否則返回0x FFFFFFFF。

  對(duì)于沒(méi)有被掛起的線程,程序員可以調(diào)用SuspendThread函數(shù)強(qiáng)行掛起之:

DWORD SuspendThread(HANDLE hThread);

  一個(gè)線程可以被掛起多次。線程可以自行暫停運(yùn)行,但是不能自行恢復(fù)運(yùn)行。如果一個(gè)線程被掛起n次,則該線程也必須被恢復(fù)n次才可能得以執(zhí)行。

5.設(shè)置線程優(yōu)先級(jí)

  當(dāng)一個(gè)線程被首次創(chuàng)建時(shí),它的優(yōu)先級(jí)等同于它所屬進(jìn)程的優(yōu)先級(jí)。在單個(gè)進(jìn)程內(nèi)可以通過(guò)調(diào)用SetThreadPriority函數(shù)改變線程的相對(duì)優(yōu)先級(jí)。一個(gè)線程的優(yōu)先級(jí)是相對(duì)于其所屬進(jìn)程的優(yōu)先級(jí)而言的。

BOOL SetThreadPriority(HANDLE hThread, int nPriority);

  其中參數(shù)hThread是指向待修改優(yōu)先級(jí)線程的句柄,線程與包含它的進(jìn)程的優(yōu)先級(jí)關(guān)系如下:

   線程優(yōu)先級(jí) = 進(jìn)程類基本優(yōu)先級(jí) + 線程相對(duì)優(yōu)先級(jí)

  進(jìn)程類的基本優(yōu)先級(jí)包括:

 ?。?)實(shí)時(shí):REALTIME_PRIORITY_CLASS;

 ?。?)高:HIGH _PRIORITY_CLASS;

  (3)高于正常:ABOVE_NORMAL_PRIORITY_CLASS;

  (4)正常:NORMAL _PRIORITY_CLASS;

 ?。?)低于正常:BELOW_ NORMAL _PRIORITY_CLASS;

  (6)空閑:IDLE_PRIORITY_CLASS。

  我們從Win32任務(wù)管理器中可以直觀的看到這六個(gè)進(jìn)程類優(yōu)先級(jí),如下圖:


  線程的相對(duì)優(yōu)先級(jí)包括:

 ?。?)空閑:THREAD_PRIORITY_IDLE;

 ?。?)最低線程:THREAD_PRIORITY_LOWEST;

 ?。?)低于正常線程:THREAD_PRIORITY_BELOW_NORMAL;

 ?。?)正常線程:THREAD_PRIORITY_ NORMAL (缺省);

 ?。?)高于正常線程:THREAD_PRIORITY_ABOVE_NORMAL;

 ?。?)最高線程:THREAD_PRIORITY_HIGHEST;

 ?。?)關(guān)鍵時(shí)間:THREAD_PRIOTITY_CRITICAL。

  下圖給出了進(jìn)程優(yōu)先級(jí)和線程相對(duì)優(yōu)先級(jí)的映射關(guān)系:


  例如:

HANDLE hCurrentThread = GetCurrentThread();
//獲得該線程句柄
SetThreadPriority(hCurrentThread, THREAD_PRIORITY_LOWEST);

  6.睡眠

VOID Sleep(DWORD dwMilliseconds);

  該函數(shù)可使線程暫停自己的運(yùn)行,直到dwMilliseconds毫秒過(guò)去為止。它告訴系統(tǒng),自身不想在某個(gè)時(shí)間段內(nèi)被調(diào)度。

  7.其它重要API

  獲得線程優(yōu)先級(jí)

  一個(gè)線程被創(chuàng)建時(shí),就會(huì)有一個(gè)默認(rèn)的優(yōu)先級(jí),但是有時(shí)要?jiǎng)討B(tài)地改變一個(gè)線程的優(yōu)先級(jí),有時(shí)需獲得一個(gè)線程的優(yōu)先級(jí)。

Int GetThreadPriority (HANDLE hThread);

  如果函數(shù)執(zhí)行發(fā)生錯(cuò)誤,會(huì)返回THREAD_PRIORITY_ERROR_RETURN標(biāo)志。如果函數(shù)成功地執(zhí)行,會(huì)返回優(yōu)先級(jí)標(biāo)志。

  獲得線程退出碼

BOOL WINAPI GetExitCodeThread(
 HANDLE hThread,
 LPDWORD lpExitCode
);

  如果執(zhí)行成功,GetExitCodeThread返回TRUE,退出碼被lpExitCode指向內(nèi)存記錄;否則返回FALSE,我們可通過(guò)GetLastError()獲知錯(cuò)誤原因。如果線程尚未結(jié)束,lpExitCode帶回來(lái)的將是STILL_ALIVE。

獲得/設(shè)置線程上下文
BOOL WINAPI GetThreadContext(
 HANDLE hThread,
 LPCONTEXT lpContext
);
BOOL WINAPI SetThreadContext(
 HANDLE hThread,
 CONST CONTEXT *lpContext
);

   由于GetThreadContext和SetThreadContext可以操作CPU內(nèi)部的寄存器,因此在一些高級(jí)技巧的編程中有一定應(yīng)用。譬如, 調(diào)試器可利用GetThreadContext掛起被調(diào)試線程獲取其上下文,并設(shè)置上下文中的標(biāo)志寄存器中的陷阱標(biāo)志位,最后通過(guò) SetThreadContext使設(shè)置生效來(lái)進(jìn)行單步調(diào)試。

  8.實(shí)例

  以下程序使用CreateThread創(chuàng)建兩個(gè)線程,在這兩個(gè)線程中Sleep一段時(shí)間,主線程通過(guò)GetExitCodeThread來(lái)判斷兩個(gè)線程是否結(jié)束運(yùn)行:

#define WIN32_LEAN_AND_MEAN
#include <stdio.h>
#include <stdlib.h>
#include <windows.h>
#include <conio.h>

DWORD WINAPI ThreadFunc(LPVOID);

int main()
{
 HANDLE hThrd1;
 HANDLE hThrd2;
 DWORD exitCode1 = 0;
 DWORD exitCode2 = 0;
 DWORD threadId;

 hThrd1 = CreateThread(NULL, 0, ThreadFunc, (LPVOID)1, 0, &threadId );
 if (hThrd1)
  printf("Thread 1 launched/n");

 hThrd2 = CreateThread(NULL, 0, ThreadFunc, (LPVOID)2, 0, &threadId );
 if (hThrd2)
  printf("Thread 2 launched/n");

 // Keep waiting until both calls to GetExitCodeThread succeed AND
 // neither of them returns STILL_ACTIVE.
 for (;;)
 {
  printf("Press any key to exit../n");
  getch();

  GetExitCodeThread(hThrd1, &exitCode1);
  GetExitCodeThread(hThrd2, &exitCode2);
  if ( exitCode1 == STILL_ACTIVE )
   puts("Thread 1 is still running!");
  if ( exitCode2 == STILL_ACTIVE )
   puts("Thread 2 is still running!");
  if ( exitCode1 != STILL_ACTIVE && exitCode2 != STILL_ACTIVE )
   break;
 }

 CloseHandle(hThrd1);
 CloseHandle(hThrd2);

 printf("Thread 1 returned %d/n", exitCode1);
 printf("Thread 2 returned %d/n", exitCode2);

 return EXIT_SUCCESS;
}

/*
* Take the startup value, do some simple math on it,
* and return the calculated value.
*/
DWORD WINAPI ThreadFunc(LPVOID n)
{
 Sleep((DWORD)n*1000*2);
 return (DWORD)n * 10;
}

  通過(guò)下面的程序我們可以看出多線程程序運(yùn)行順序的難以預(yù)料以及WINAPI的CreateThread函數(shù)與C運(yùn)行時(shí)庫(kù)的_beginthread的差別:

#define WIN32_LEAN_AND_MEAN
#include <stdio.h>
#include <stdlib.h>
#include <windows.h>

DWORD WINAPI ThreadFunc(LPVOID);

int main()
{
 HANDLE hThrd;
 DWORD threadId;
 int i;

 for (i = 0; i < 5; i++)
 {
  hThrd = CreateThread(NULL, 0, ThreadFunc, (LPVOID)i, 0, &threadId);
  if (hThrd)
  {
   printf("Thread launched %d/n", i);
   CloseHandle(hThrd);
  }
 }
 // Wait for the threads to complete.
 Sleep(2000);

 return EXIT_SUCCESS;
}

DWORD WINAPI ThreadFunc(LPVOID n)
{
 int i;
 for (i = 0; i < 10; i++)
  printf("%d%d%d%d%d%d%d%d/n", n, n, n, n, n, n, n, n);
 return 0;
}

  運(yùn)行的輸出具有很大的隨機(jī)性,這里摘取了幾次結(jié)果的一部分(幾乎每一次都不同):


  如果我們使用標(biāo)準(zhǔn)C庫(kù)函數(shù)而不是多線程版的運(yùn)行時(shí)庫(kù),則程序可能輸出"3333444444"這樣的結(jié)果,而使用多線程運(yùn)行時(shí)庫(kù)后,則可避免這一問(wèn)題。

  下列程序在主線程中創(chuàng)建一個(gè)SecondThread,在SecondThread線程中通過(guò)自增對(duì)Counter計(jì)數(shù)到1000000,主線程一直等待其結(jié)束:

#include <Win32.h>
#include <stdio.h>
#include <process.h>

unsigned Counter;
unsigned __stdcall SecondThreadFunc(void *pArguments)
{
 printf("In second thread.../n");

 while (Counter < 1000000)
  Counter++;

 _endthreadex(0);
 return 0;
}

int main()
{
 HANDLE hThread;
 unsigned threadID;

 printf("Creating second thread.../n");

 // Create the second thread.
 hThread = (HANDLE)_beginthreadex(NULL, 0, &SecondThreadFunc, NULL, 0, &threadID);

 // Wait until second thread terminates
 WaitForSingleObject(hThread, INFINITE);
 printf("Counter should be 1000000; it is-> %d/n", Counter);
 // Destroy the thread object.
 CloseHandle(hThread);
}

    本站是提供個(gè)人知識(shí)管理的網(wǎng)絡(luò)存儲(chǔ)空間,所有內(nèi)容均由用戶發(fā)布,不代表本站觀點(diǎn)。請(qǐng)注意甄別內(nèi)容中的聯(lián)系方式、誘導(dǎo)購(gòu)買等信息,謹(jǐn)防詐騙。如發(fā)現(xiàn)有害或侵權(quán)內(nèi)容,請(qǐng)點(diǎn)擊一鍵舉報(bào)。
    轉(zhuǎn)藏 分享 獻(xiàn)花(0

    0條評(píng)論

    發(fā)表

    請(qǐng)遵守用戶 評(píng)論公約

    類似文章 更多