解非線性方程組的方法有很多,比如直接降維、搜索(用最小二乘、牛頓迭代及最優(yōu)化法)、連續(xù)法等等. 直接降維操作較難,求解時間長;牛頓迭代有局部收斂性;最優(yōu)化必須給出真實解的初始值;連續(xù)發(fā)需要構造同倫方程。 看看fsolve的源代碼: >> type fsolve function [x,FVAL,EXITFLAG,OUTPUT,JACOB] = fsolve(FUN,x,options,varargin) %FSOLVE solves systems of nonlinear equations of several variables. % % FSOLVE attempts to solve equations of the form: % % F(X)=0 where F and X may be vectors or matrices. % % X=FSOLVE(FUN,X0) starts at the matrix X0 and tries to solve the % equations in FUN. FUN accepts input X and returns a vector (matrix) of % equation values F evaluated at X. % % X=FSOLVE(FUN,X0,OPTIONS) solves the equations with the default optimization % parameters replaced by values in the structure OPTIONS, an argument % created with the OPTIMSET function. See OPTIMSET for details. Used % options are Display, TolX, TolFun, DerivativeCheck, Diagnostics, % FunValCheck, Jacobian, JacobMult, JacobPattern, LineSearchType, % NonlEqnAlgorithm, MaxFunEvals, MaxIter, PlotFcns, OutputFcn, % DiffMinChange and DiffMaxChange, LargeScale, MaxPCGIter, % PrecondBandWidth, TolPCG, and TypicalX. Use the Jacobian option to % specify that FUN also returns a second output argument J that is the % Jacobian matrix at the point X. If FUN returns a vector F of m % components when X has length n, then J is an m-by-n matrix where J(i,j) % is the partial derivative of F(i) with respect to x(j). (Note that the % Jacobian J is the transpose of the gradient of F.) % % X = FSOLVE(PROBLEM) solves system defined in PROBLEM. PROBLEM is a % structure with the function FUN in PROBLEM.objective, the start point % in PROBLEM.x0, the options structure in PROBLEM.options, and solver % name 'fsolve' in PROBLEM.solver. Use this syntax to solve at the % command line a problem exported from OPTIMTOOL. The structure PROBLEM % must have all the fields. % % [X,FVAL]=FSOLVE(FUN,X0,...) returns the value of the equations FUN at X. % % [X,FVAL,EXITFLAG]=FSOLVE(FUN,X0,...) returns an EXITFLAG that describes the % exit condition of FSOLVE. Possible values of EXITFLAG and the corresponding % exit conditions are % % 1 FSOLVE converged to a solution X. % 2 Change in X smaller than the specified tolerance. % 3 Change in the residual smaller than the specified tolerance. % 4 Magnitude of search direction smaller than the specified tolerance. % 0 Maximum number of function evaluations or iterations reached. % -1 Algorithm terminated by the output function. % -2 Algorithm seems to be converging to a point that is not a root. % -3 Trust region radius became too small. % -4 Line search cannot sufficiently decrease the residual along the current % search direction. % % [X,FVAL,EXITFLAG,OUTPUT]=FSOLVE(FUN,X0,...) returns a structure OUTPUT % with the number of iterations taken in OUTPUT.iterations, the number of % function evaluations in OUTPUT.funcCount, the algorithm used in OUTPUT.algorithm, % the number of CG iterations (if used) in OUTPUT.cgiterations, the first-order % optimality (if used) in OUTPUT.firstorderopt, and the exit message in % OUTPUT.message. % % [X,FVAL,EXITFLAG,OUTPUT,JACOB]=FSOLVE(FUN,X0,...) returns the % Jacobian of FUN at X. % % Examples % FUN can be specified using @: % x = fsolve(@myfun,[2 3 4],optimset('Display','iter')) % % where myfun is a MATLAB function such as: % % function F = myfun(x) % F = sin(x); % % FUN can also be an anonymous function: % % x = fsolve(@(x) sin(3*x),[1 4],optimset('Display','off')) % % If FUN is parameterized, you can use anonymous functions to capture the % problem-dependent parameters. Suppose you want to solve the system of % nonlinear equations given in the function myfun, which is parameterized % by its second argument c. Here myfun is an M-file function such as % % function F = myfun(x,c) % F = [ 2*x(1) - x(2) - exp(c*x(1)) % -x(1) + 2*x(2) - exp(c*x(2))]; % % To solve the system of equations for a specific value of c, first assign the % value to c. Then create a one-argument anonymous function that captures % that value of c and calls myfun with two arguments. Finally, pass this anonymous % function to FSOLVE: % % c = -1; % define parameter first % x = fsolve(@(x) myfun(x,c),[-5;-5]) % % See also OPTIMSET, LSQNONLIN, @, INLINE. % Copyright 1990-2006 The MathWorks, Inc. % $Revision: 1.41.4.12 $ $Date: 2006/05/19 20:18:49 $ % ------------Initialization---------------- defaultopt = struct('Display','final','LargeScale','off',... 'NonlEqnAlgorithm','dogleg',... 'TolX',1e-6,'TolFun',1e-6,'DerivativeCheck','off',... 'Diagnostics','off','FunValCheck','off',... 'Jacobian','off','JacobMult',[],...% JacobMult set to [] by default 'JacobPattern','sparse(ones(Jrows,Jcols))',... 'MaxFunEvals','100*numberOfVariables',... 'DiffMaxChange',1e-1,'DiffMinChange',1e-8,... 'PrecondBandWidth',0,'TypicalX','ones(numberOfVariables,1)',... 'MaxPCGIter','max(1,floor(numberOfVariables/2))', ... 'TolPCG',0.1,'MaxIter',400,... 'LineSearchType','quadcubic','OutputFcn',[],'PlotFcns',[]); % If just 'defaults' passed in, return the default options in X if nargin==1 && nargout <= 1 && isequal(FUN,'defaults') x = defaultopt; return end if nargin < 3, options=[]; end % Detect problem structure input if nargin == 1 if isa(FUN,'struct') [FUN,x,options] = separateOptimStruct(FUN); else % Single input and non-structure. error('optim:fsolve:InputArg','The input to FSOLVE should be either a structure with valid fields or consist of at least two arguments.'); end end if nargin == 0 error('optim:fsolve:NotEnoughInputs','FSOLVE requires at least two input arguments.') end % Check for non-double inputs if ~isa(x,'double') error('optim:fsolve:NonDoubleInput', ... 'FSOLVE only accepts inputs of data type double.') end LB = []; UB = []; xstart=x(:); numberOfVariables=length(xstart); large = 'large-scale'; medium = 'medium-scale: line search'; dogleg = 'trust-region dogleg'; switch optimget(options,'Display',defaultopt,'fast') case {'off','none'} verbosity = 0; case 'iter' verbosity = 2; case 'final' verbosity = 1; case 'testing' verbosity = Inf; otherwise verbosity = 1; end diagnostics = isequal(optimget(options,'Diagnostics',defaultopt,'fast'),'on'); gradflag = strcmp(optimget(options,'Jacobian',defaultopt,'fast'),'on'); % 0 means large-scale trust-region, 1 means medium-scale algorithm mediumflag = strcmp(optimget(options,'LargeScale',defaultopt,'fast'),'off'); funValCheck = strcmp(optimget(options,'FunValCheck',defaultopt,'fast'),'on'); switch optimget(options,'NonlEqnAlgorithm',defaultopt,'fast') case 'dogleg' algorithmflag = 1; case 'lm' algorithmflag = 2; case 'gn' algorithmflag = 3; otherwise algorithmflag = 1; end mtxmpy = optimget(options,'JacobMult',defaultopt,'fast'); if isequal(mtxmpy,'atamult') warning('optim:fsolve:NameClash', ... ['Potential function name clash with a Toolbox helper function:\n' ... 'Use a name besides ''atamult'' for your JacobMult function to\n' ... 'avoid errors or unexpected results.']) end % Convert to inline function as needed if ~isempty(FUN) % will detect empty string, empty matrix, empty cell array funfcn = lsqfcnchk(FUN,'fsolve',length(varargin),funValCheck,gradflag); else error('optim:fsolve:InvalidFUN', ... ['FUN must be a function name, valid string expression, or inline object;\n' ... ' or, FUN may be a cell array that contains these type of objects.']) end JAC = []; x(:) = xstart; switch funfcn{1} case 'fun' fuser = feval(funfcn{3},x,varargin{:}); f = fuser(:); nfun=length(f); case 'fungrad' [fuser,JAC] = feval(funfcn{3},x,varargin{:}); f = fuser(:); nfun=length(f); case 'fun_then_grad' fuser = feval(funfcn{3},x,varargin{:}); f = fuser(:); JAC = feval(funfcn{4},x,varargin{:}); nfun=length(f); otherwise error('optim:fsolve:UndefinedCalltype','Undefined calltype in FSOLVE.') end if gradflag % check size of JAC [Jrows, Jcols]=size(JAC); if isempty(mtxmpy) % Not using 'JacobMult' so Jacobian must be correct size if Jrows~=nfun || Jcols~=numberOfVariables error('optim:fsolve:InvalidJacobian', ... ['User-defined Jacobian is not the correct size:\n' ... ' the Jacobian matrix should be %d-by-%d.'],nfun,numberOfVariables) end end else Jrows = nfun; Jcols = numberOfVariables; end XDATA = []; YDATA = []; caller = 'fsolve'; % Choose what algorithm to run: determine (i) OUTPUT.algorithm and % (ii) if and only if OUTPUT.algorithm = medium, also option.LevenbergMarquardt. % Option LevenbergMarquardt is used internally; it's not user settable. For % this reason we change this option directly, for speed; users should use % optimset. if ~mediumflag if nfun >= numberOfVariables % large-scale method and enough equations (as many as variables) OUTPUT.algorithm = large; else % large-scale method and not enough equations - switch to medium-scale algorithm warning('optim:fsolve:FewerFunsThanVars', ... ['Large-scale method requires at least as many equations as variables;\n' ... ' using line-search method instead.']) OUTPUT.algorithm = medium; options.LevenbergMarquardt = 'off'; end else if algorithmflag == 1 && nfun == numberOfVariables OUTPUT.algorithm = dogleg; elseif algorithmflag == 1 && nfun ~= numberOfVariables warning('optim:fsolve:NonSquareSystem', ... ['Default trust-region dogleg method of FSOLVE cannot\n handle non-square systems; ', ... 'using Gauss-Newton method instead.']); OUTPUT.algorithm = medium; options.LevenbergMarquardt = 'off'; elseif algorithmflag == 2 OUTPUT.algorithm = medium; options.LevenbergMarquardt = 'on'; else % algorithmflag == 3 OUTPUT.algorithm = medium; options.LevenbergMarquardt = 'off'; end end if diagnostics > 0 % Do diagnostics on information so far constflag = 0; gradconstflag = 0; non_eq=0;non_ineq=0;lin_eq=0;lin_ineq=0; confcn{1}=[];c=[];ceq=[];cGRAD=[];ceqGRAD=[]; hessflag = 0; HESS=[]; diagnose('fsolve',OUTPUT,gradflag,hessflag,constflag,gradconstflag,... mediumflag,options,defaultopt,xstart,non_eq,... non_ineq,lin_eq,lin_ineq,LB,UB,funfcn,confcn,f,JAC,HESS,c,ceq,cGRAD,ceqGRAD); end % Execute algorithm if isequal(OUTPUT.algorithm, large) if ~gradflag Jstr = optimget(options,'JacobPattern',defaultopt,'fast'); if ischar(Jstr) if isequal(lower(Jstr),'sparse(ones(jrows,jcols))') Jstr = sparse(ones(Jrows,Jcols)); else error('optim:fsolve:InvalidJacobPattern', ... 'Option ''JacobPattern'' must be a matrix if not the default.') end end else Jstr = []; end computeLambda = 0; [x,FVAL,LAMBDA,JACOB,EXITFLAG,OUTPUT,msg]=... snls(funfcn,x,LB,UB,verbosity,options,defaultopt,f,JAC,XDATA,YDATA,caller,... Jstr,computeLambda,varargin{:}); elseif isequal(OUTPUT.algorithm, dogleg) % trust region dogleg method Jstr = []; [x,FVAL,JACOB,EXITFLAG,OUTPUT,msg]=... trustnleqn(funfcn,x,verbosity,gradflag,options,defaultopt,f,JAC,... Jstr,varargin{:}); else % line search (Gauss-Newton or Levenberg-Marquardt) [x,FVAL,JACOB,EXITFLAG,OUTPUT,msg] = ... nlsq(funfcn,x,verbosity,options,defaultopt,f,JAC,XDATA,YDATA,caller,varargin{:}); end Resnorm = FVAL'*FVAL; % assumes FVAL still a vector if EXITFLAG > 0 % if we think we converged: if Resnorm > sqrt(optimget(options,'TolFun',defaultopt,'fast')) OUTPUT.message = ... sprintf(['Optimizer appears to be converging to a minimum that is not a root:\n' ... 'Sum of squares of the function values is > sqrt(options.TolFun).\n' ... 'Try again with a new starting point.']); if verbosity > 0 disp(OUTPUT.message) end EXITFLAG = -2; else OUTPUT.message = msg; if verbosity > 0 disp(OUTPUT.message); end end else OUTPUT.message = msg; if verbosity > 0 disp(OUTPUT.message); end end % Reset FVAL to shape of the user-function output, fuser FVAL = reshape(FVAL,size(fuser)); solve 是求解符號函數(shù)的,fsolve在求解非線性方程組需要付給其初值,初值不同,結(jié)果不同。 x=fsolve(fun,x0)求解fun(x)=0的解,x0是初值,fun是函數(shù),x就是解 因為fsolve使用迭代法求解方程的,所以總要有個迭代的初值吧,這個初值就是你給的x0。 比如解方程組 x(1).^2+x(2).^2=1 x(1)=2*x(2) 可以寫成 f=@(x)([x(1).^2+x(2).^2-1;x(1)-2*x(2)]) x=fsolve(f,[1 1]) 這里[1 1]就是初值,其實初值一般情況下可以隨便給的。
|
|
來自: 絕地戰(zhàn)士 > 《我的圖書館》