日韩黑丝制服一区视频播放|日韩欧美人妻丝袜视频在线观看|九九影院一级蜜桃|亚洲中文在线导航|青草草视频在线观看|婷婷五月色伊人网站|日本一区二区在线|国产AV一二三四区毛片|正在播放久草视频|亚洲色图精品一区

分享

Social Choice Function

 藍(lán)-海-天 2007-03-19
看到關(guān)于Web服務(wù)質(zhì)量選擇的決策算法,提到一種多屬性的群決策服務(wù)選擇算法
開篇引入了一個(gè)SOCIAL CHOICE FUNCTION,并以此為基礎(chǔ)進(jìn)行計(jì)算
仔細(xì)看看到底是個(gè)啥東東?
 
----------------http://gbweb./research_new/c_PropertyStory.php?filecode=20051214----------------------------

早在上世紀(jì)四十年代末、五十年代初,現(xiàn)代經(jīng)濟(jì)學(xué)巨匠之一的阿羅教授(K.Arrow),就在其博士論文中證明了許多《信報(bào)》讀者可能耳熟能詳?shù)摹覆豢赡苄远ɡ怼梗ˋrrow Impossibility Theorem)。阿羅教授首次用嚴(yán)謹(jǐn)?shù)臄?shù)字推算,論證不可能存在任何一個(gè)社會(huì)選擇函數(shù)(social choice function),能同時(shí)滿足數(shù)條看上去相當(dāng)合情合理的數(shù)學(xué)定理(axiom),如個(gè)人的偏好具有傳遞性(亦即喜歡A超過B而且喜歡B超過C的人,應(yīng)該喜歡A超過C)、帕累托原則、不相關(guān)選擇之間的獨(dú)立性、不能有強(qiáng)制或獨(dú)裁等。換句話說,想把所有個(gè)人偏好整合成一個(gè)社會(huì)偏好,上述這些公理中至少有一條不能被滿足。

盡管這個(gè)超前的博士論文害得阿羅教授畢業(yè)后找不到正式工作,但這篇論文卻開創(chuàng)了一個(gè)劃時(shí)代的學(xué)科,「社會(huì)選擇理論」(social choice theory),今天還有專門的學(xué)會(huì)。

較少為人注意的是七十年代初,一位哲學(xué)家(Alan Gibbard)和兩位數(shù)理經(jīng)濟(jì)學(xué)(Mark Satterthwaite與Prasanta K. Pattanaik),幾乎同時(shí)獨(dú)立發(fā)現(xiàn)并證明,不可能存在任何一種選舉制度(voting)能免于被操縱(manipulation)。這就是著名的Gibbard-Satterthwaite定理。其分析方法類似于阿羅不可能性定理,也是從數(shù)條看似相當(dāng)合情合理的數(shù)學(xué)公理出發(fā),結(jié)果推算出論來。這方面的研究在上世紀(jì)七、八十年代成果輩出。
 
---------------------http://www.math./funfacts/ffiles/10007.8.shtml--------------------------------------------

If there are only two candidates, the answer is clear--- choose the one who would win the most votes in a head-to-head election. But with three or more candidates, when each voter has ranked his or her candidate preferences, the answer is less obvious.

Mathematically we can formalize the question in this way. A social choice function is a function that takes lists of people‘s ranked preferences and outputs a single alternative (the "winner" of the election). So the question becomes: is there a "good" social choice function that represents "the will of the people"?

Consider the following situation with 3 voters and 3 candidates:

Suppose Voter 1 prefers A to B to C.
Suppose Voter 2 prefers B to C to A.
Suppose Voter 3 prefers C to A to B.

Notice that no matter who is selected as the "social choice" for this set of lists, then 2/3 of the voters will be "unhappy" in the sense that those voters prefer another candidate to the one chosen by the social choice function! (For instance, if A is chosen as the winner, then Voters 2 and 3 will prefer C to A.)

This paradox, due to Maurice de Condorcet in 1785, shows that it is not always possible for a social choice function to pick a candidate that will beat all other candidates in pairwise comparisons. If there is a candidate that does, then that candidate is called a Condorcet winner.

The Math Behind the Fact:
The study of social choice functions and related questions is called social choice theory. There are other famous impossibility results: most notably
Arrow‘s Impossibility Theorem.

 參考上述文獻(xiàn),可以得出,SOCIAL CHOICE FUCNTION是一個(gè)這樣的函數(shù):輸入為若干決策人對(duì)多個(gè)被選擇對(duì)象的排序結(jié)果,輸出則為綜合了所有決策人排序結(jié)果后給出的最優(yōu)先被選擇的唯一確定的對(duì)象。
 

    本站是提供個(gè)人知識(shí)管理的網(wǎng)絡(luò)存儲(chǔ)空間,所有內(nèi)容均由用戶發(fā)布,不代表本站觀點(diǎn)。請(qǐng)注意甄別內(nèi)容中的聯(lián)系方式、誘導(dǎo)購(gòu)買等信息,謹(jǐn)防詐騙。如發(fā)現(xiàn)有害或侵權(quán)內(nèi)容,請(qǐng)點(diǎn)擊一鍵舉報(bào)。
    轉(zhuǎn)藏 分享 獻(xiàn)花(0

    0條評(píng)論

    發(fā)表

    請(qǐng)遵守用戶 評(píng)論公約

    類似文章 更多